metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis{6-methyl-2-[(tri­methyl­silyl)amino]pyridine-κN1}cobalt(II)

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: chenxia@sxu.edu.cn

(Received 7 July 2009; accepted 16 July 2009; online 22 July 2009)

In the structure of the title compound, [CoCl2(C9H16N2Si)2], the CoII atom is located on an inversion center in a slightly distorted tetra­hedral environment formed by two chloride ions and the pyridine N atoms of two chelating 6-methyl-2-[(trimethyl­silyl)amino]pyridine ligands. The dihedral angle between the planes of the pyridine rings is 80.06 (5)°. Cohesion within the crystal structure is accomplished by N—H⋯Cl hydrogen bonds.

Related literature

For the chemistry of N-functionalized amino ligands, see: Liddle & Clegg (2001[Liddle, S. T. & Clegg, W. (2001). J. Chem. Soc., Dalton Trans. pp. 402-408.]); Engelhardt et al. (1988[Engelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011-1020.]); Kempe (2000[Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.]) and references therein. Trimethyl­silyl-substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activity, see: Andrews et al. (2004[Andrews, J. E., McGrady, P. J. & Nichols, P. T. (2004). Organometallics, 23, 446-453.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C9H16N2Si)2]

  • Mr = 490.49

  • Monoclinic, C 2/c

  • a = 14.817 (3) Å

  • b = 12.554 (4) Å

  • c = 14.886 (2) Å

  • β = 114.09 (2)°

  • V = 2527.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 213 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 0.826

  • 5113 measured reflections

  • 2224 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.02

  • 2224 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.86 2.48 3.284 (2) 155
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. The molecule (Co atom) lies on a crystallographic inversion centre. Dimensions are available in the archived CIF. The chemistry of the N-functionalized amido ligands (Liddle and Clegg, 2001; Engelhardt et al., 1988; Kempe, 2000, and references therein) has attracted much interest, and a number of maingroup and transition metal amido complexes with unusual coordination geometry have been isolated. Trimethylsily substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activities (Andrews et al., 2004). Here, we report the synthesis and structure of a new 6-methyl-2-(trimethylsilylamino) pyridine cobalt complex.

The molecular structure is illustrated in Fig. 1. In the complex, the Co atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyridine and two terminal Cl atoms. The bond lengths and angles are within normal ranges. Phenanthridine ring systems are, of course, planar and the dihedral angle between them is A/B = 80.06 (5)°. The compound displays intramolecular N—H···Cl hydrogen bonds (Table 2).

Related literature top

For the chemistry of N-functionalized amino ligands, see: Liddle & Clegg (2001); Engelhardt et al. (1988); Kempe (2000) and references therein. Trimethylsily substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activity, see: Andrews et al. (2004).

Experimental top

6-Methyl-2-aminopyridine (0.25 g, 2.31 mmol) was added to a solution of LiBun (0.81 ml g, 2.31 mmol) in Et2O (30 ml) at 0°C. The resulting mixture was then warmed to room temperature and stirred for 3 h. SiMe3Cl (0.27 ml, 2.19 mmol) was added at 0°C. The resulting mixture was warmed to room temperature again and stirred for 3 h.CoCl2 (0.31 g, 2.39 mmol) was the added at -78°C and the mixture was warmed to room temperature and stirred for 24 h. The volatiles were removed in vacuo and the residue was extracted with dichloromethane then filtered. The filtrate was concentrated to give blue crystals (0.79 g, 67%). Anal. Calcd for C18H32Cl2CoN4Si2(%): C, 44.08; H, 6.58; N 11.42. Found: C, 42.85; H, 6.52; N, 10.99.

Refinement top

H atoms of the methyl groups were derived from Fourier maps (HFIX 137) and allowed to ride during subsequent refinement with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Other hydrogen atoms were refined at calculated positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.86 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Dichloridobis{6-methyl-2-[(trimethylsilyl)amino]pyridine- κN1}cobalt(II) top
Crystal data top
[CoCl2(C9H16N2Si)2]F(000) = 1028
Mr = 490.49Dx = 1.289 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2926 reflections
a = 14.817 (3) Åθ = 2.2–260639°
b = 12.554 (4) ŵ = 1.00 mm1
c = 14.886 (2) ÅT = 213 K
β = 114.09 (2)°Block, blue
V = 2527.8 (10) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2224 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1317
Tmin = 0.754, Tmax = 0.826k = 1413
5113 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: geom and difmap
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0559P)2]
where P = (Fo2 + 2Fc2)/3
2224 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[CoCl2(C9H16N2Si)2]V = 2527.8 (10) Å3
Mr = 490.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.817 (3) ŵ = 1.00 mm1
b = 12.554 (4) ÅT = 213 K
c = 14.886 (2) Å0.30 × 0.30 × 0.20 mm
β = 114.09 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1905 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.826Rint = 0.020
5113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
2224 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.78913 (3)0.25000.03732 (16)
Cl10.10398 (5)0.89853 (5)0.21598 (5)0.0592 (2)
Si10.00558 (5)0.75476 (5)0.57526 (5)0.04150 (19)
N10.09602 (12)0.69403 (12)0.36153 (13)0.0331 (4)
N20.04259 (13)0.76380 (14)0.47782 (13)0.0407 (5)
H2A0.01660.81530.43730.049*
C10.10695 (15)0.70085 (15)0.45668 (16)0.0352 (5)
C20.18218 (15)0.64481 (17)0.53209 (16)0.0396 (5)
H2B0.18940.65120.59690.048*
C30.24442 (16)0.58107 (17)0.50937 (17)0.0437 (6)
H3A0.29520.54460.55880.052*
C40.23132 (16)0.57104 (17)0.41187 (17)0.0422 (5)
H4A0.27230.52620.39550.051*
C50.15804 (15)0.62725 (17)0.34001 (16)0.0372 (5)
C60.14102 (18)0.6165 (2)0.23377 (17)0.0514 (6)
H6A0.18610.56490.22780.077*
H6B0.15180.68410.20960.077*
H6C0.07430.59360.19600.077*
C70.1062 (2)0.7875 (2)0.69626 (19)0.0632 (7)
H7A0.15750.73490.71270.095*
H7B0.08040.78830.74580.095*
H7C0.13290.85640.69290.095*
C80.0395 (2)0.6186 (2)0.5781 (2)0.0780 (9)
H8A0.09100.60170.51520.117*
H8B0.06510.61410.62780.117*
H8C0.01400.56900.59300.117*
C90.0937 (2)0.8548 (3)0.5436 (2)0.0819 (10)
H9A0.06850.92340.53700.123*
H9B0.11740.85740.59470.123*
H9C0.14700.83560.48260.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0405 (3)0.0364 (3)0.0298 (3)0.0000.00890 (19)0.000
Cl10.0730 (5)0.0549 (4)0.0429 (4)0.0265 (3)0.0167 (3)0.0029 (3)
Si10.0433 (4)0.0439 (4)0.0383 (4)0.0058 (3)0.0177 (3)0.0030 (3)
N10.0311 (9)0.0327 (9)0.0327 (10)0.0001 (7)0.0102 (8)0.0018 (7)
N20.0481 (11)0.0398 (10)0.0331 (11)0.0132 (8)0.0156 (9)0.0061 (8)
C10.0363 (12)0.0312 (11)0.0356 (12)0.0039 (9)0.0123 (10)0.0017 (9)
C20.0403 (12)0.0419 (12)0.0334 (12)0.0002 (10)0.0117 (10)0.0041 (10)
C30.0363 (12)0.0412 (12)0.0473 (15)0.0044 (10)0.0107 (11)0.0063 (11)
C40.0353 (12)0.0425 (12)0.0484 (14)0.0032 (10)0.0168 (11)0.0012 (11)
C50.0330 (11)0.0380 (11)0.0398 (13)0.0046 (9)0.0142 (10)0.0061 (10)
C60.0444 (13)0.0660 (16)0.0431 (14)0.0052 (12)0.0170 (11)0.0104 (12)
C70.0665 (18)0.0831 (19)0.0421 (16)0.0077 (15)0.0243 (14)0.0082 (14)
C80.091 (2)0.0630 (18)0.094 (3)0.0211 (17)0.0524 (19)0.0041 (17)
C90.088 (2)0.102 (2)0.071 (2)0.049 (2)0.0480 (18)0.0261 (19)
Geometric parameters (Å, º) top
Co1—N1i2.0681 (17)C3—H3A0.9300
Co1—N12.0681 (17)C4—C51.369 (3)
Co1—Cl12.2701 (7)C4—H4A0.9300
Co1—Cl1i2.2701 (7)C5—C61.503 (3)
Si1—N21.7512 (19)C6—H6A0.9600
Si1—C91.843 (3)C6—H6B0.9600
Si1—C81.843 (3)C6—H6C0.9600
Si1—C71.856 (3)C7—H7A0.9600
N1—C11.361 (3)C7—H7B0.9600
N1—C51.375 (3)C7—H7C0.9600
N2—C11.370 (3)C8—H8A0.9600
N2—H2A0.8600C8—H8B0.9600
C1—C21.406 (3)C8—H8C0.9600
C2—C31.364 (3)C9—H9A0.9600
C2—H2B0.9300C9—H9B0.9600
C3—C41.389 (3)C9—H9C0.9600
N1i—Co1—N1109.49 (9)C3—C4—H4A120.1
N1i—Co1—Cl1118.51 (5)C4—C5—N1121.7 (2)
N1—Co1—Cl1102.78 (5)C4—C5—C6121.01 (19)
N1i—Co1—Cl1i102.78 (5)N1—C5—C6117.33 (19)
N1—Co1—Cl1i118.51 (5)C5—C6—H6A109.5
Cl1—Co1—Cl1i105.54 (4)C5—C6—H6B109.5
N2—Si1—C9103.38 (11)H6A—C6—H6B109.5
N2—Si1—C8108.58 (12)C5—C6—H6C109.5
C9—Si1—C8112.25 (15)H6A—C6—H6C109.5
N2—Si1—C7112.97 (11)H6B—C6—H6C109.5
C9—Si1—C7109.78 (14)Si1—C7—H7A109.5
C8—Si1—C7109.78 (14)Si1—C7—H7B109.5
C1—N1—C5118.28 (17)H7A—C7—H7B109.5
C1—N1—Co1123.35 (13)Si1—C7—H7C109.5
C5—N1—Co1118.11 (14)H7A—C7—H7C109.5
C1—N2—Si1129.45 (15)H7B—C7—H7C109.5
C1—N2—H2A115.3Si1—C8—H8A109.5
Si1—N2—H2A115.3Si1—C8—H8B109.5
N1—C1—N2118.49 (19)H8A—C8—H8B109.5
N1—C1—C2121.22 (19)Si1—C8—H8C109.5
N2—C1—C2120.3 (2)H8A—C8—H8C109.5
C3—C2—C1119.5 (2)H8B—C8—H8C109.5
C3—C2—H2B120.3Si1—C9—H9A109.5
C1—C2—H2B120.3Si1—C9—H9B109.5
C2—C3—C4119.5 (2)H9A—C9—H9B109.5
C2—C3—H3A120.3Si1—C9—H9C109.5
C4—C3—H3A120.3H9A—C9—H9C109.5
C5—C4—C3119.9 (2)H9B—C9—H9C109.5
C5—C4—H4A120.1
N1i—Co1—N1—C1123.88 (16)Si1—N2—C1—N1154.07 (16)
Cl1—Co1—N1—C1109.30 (15)Si1—N2—C1—C225.8 (3)
Cl1i—Co1—N1—C16.54 (17)N1—C1—C2—C31.1 (3)
N1i—Co1—N1—C562.03 (13)N2—C1—C2—C3178.84 (19)
Cl1—Co1—N1—C564.80 (14)C1—C2—C3—C41.2 (3)
Cl1i—Co1—N1—C5179.37 (12)C2—C3—C4—C51.8 (3)
C9—Si1—N2—C1172.5 (2)C3—C4—C5—N10.1 (3)
C8—Si1—N2—C153.1 (2)C3—C4—C5—C6178.9 (2)
C7—Si1—N2—C168.9 (2)C1—N1—C5—C42.0 (3)
C5—N1—C1—N2177.26 (17)Co1—N1—C5—C4172.35 (15)
Co1—N1—C1—N28.7 (2)C1—N1—C5—C6176.76 (19)
C5—N1—C1—C22.6 (3)Co1—N1—C5—C68.8 (2)
Co1—N1—C1—C2171.44 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.862.483.284 (2)155
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C9H16N2Si)2]
Mr490.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)213
a, b, c (Å)14.817 (3), 12.554 (4), 14.886 (2)
β (°) 114.09 (2)
V3)2527.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.754, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
5113, 2224, 1905
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.02
No. of reflections2224
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.20

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.862.483.284 (2)155.4
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.

References

First citationAndrews, J. E., McGrady, P. J. & Nichols, P. T. (2004). Organometallics, 23, 446–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011–1020.  CSD CrossRef Web of Science Google Scholar
First citationKempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.  CrossRef CAS Google Scholar
First citationLiddle, S. T. & Clegg, W. (2001). J. Chem. Soc., Dalton Trans. pp. 402–408.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds