organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-2-phenyl-1-(phenyl­sulfin­yl)naphtho[2,1-b]furan benzene hemisolvate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry Pukyong National University 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 April 2009; accepted 3 July 2009; online 11 July 2009)

The title compound, C24H15BrO2S·0.5C6H6, crystallizes as a benzene hemisolvate. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the naphthofuran fragment, and the phenyl ring is almost perpendicular to the plane of the naphthofuran fragment [83.78 (8)°] and is tilted slightly towards it. The 2-phenyl ring is rotated out of the naphthofuran plane by a dihedral angle of 25.2 (1)°. The crystal structure is stabilized by aromatic ππ inter­actions between the central benzene ring and the furan ring of the neighbouring naphthofuran systems [centroid–centroid distance = 3.611 (3) Å], and by inter­molecular C—H⋯π inter­actions between the benzene H atom of the phenyl­sulfinyl substituent and the 2-phenyl ring of an adjacent mol­ecule. In addition, the crystal structure exhibits a weak non-classical inter­molecular C—H⋯O hydrogen bond.

Related literature

For the crystal structures of similar 7–bromo­naphtho[2,1–b]furan derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4102.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o944.]). For details of the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15BrO2S·0.5C6H6

  • Mr = 486.38

  • Triclinic, [P \overline 1]

  • a = 8.154 (1) Å

  • b = 10.268 (2) Å

  • c = 13.771 (2) Å

  • α = 80.656 (2)°

  • β = 86.431 (2)°

  • γ = 75.377 (2)°

  • V = 1100.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 298 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.504, Tmax = 0.826

  • 8221 measured reflections

  • 3870 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.06

  • 3870 reflections

  • 280 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯Cg1i 0.93 2.87 3.740 (4) 156
C20—H20⋯O2ii 0.93 2.52 3.392 (4) 155
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1. Cg1 is the centroid of the C13–C18 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naphthofuran compounds have attracted widespread interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of 7–bromonaphtho[2,1–b]furan analogues, viz. 7–bromo–2–methyl–1–(phenylsulfanyl)naphtho[2,1–b]furan (Choi et al., 2007) and 7–bromo–2–methyl–1–(phenylsulfonyl)naphtho[2,1–b]furan (Choi et al., 2008). We present here the crystal structure of the title compound (I) co-crystallized with benzene. The benzene solvate sits on a center of symmetry (Fig. 1) such that the structures is a hemisolvate.

The naphthofuran unit is essentially planar, with a mean deviation of 0.056 (2) Å from the least–squares plane defined by the thirteen constituent atoms. The dihedral angle in (I) formed by the plane of the naphthofuran ring and the plane of 2–phenyl ring is 25.2 (1)°, and the phenyl ring (C19–C24) with a dihedral angle of 83.78 (8)° is almost perpendicular and titlled slightly toward the naphthofuran moieity. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the central benzene ring and the furan ring from adjacent molecules. The Cg2···Cg3iv distance is 3.611 (3) Å (Cg2 and Cg3 are the centroides of the C1/C2/C11/O1/C12 furan ring and the C2/C3/C8/C9/C10/C11 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···π interactions between the benzene H atom of the phenylsulfinyl substituent and the 2-phenyl ring of an adjacent molecule (Table 1 and Fig. 2). Additionally, a weak non–calssical intermolecular C—H···O hydrogen bond in the structure was observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 7–bromonaphtho[2,1–b]furan derivatives, see: Choi et al. (2007, 2008). For details of the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005). Cg1 is the centroid of C13–C18 benzene ring.

Experimental top

3-chloroperoxybenzoic acid (77%, 217 mg, 0.88 mmol) was added in small portions to a stirred solution of 7-bromo-2-phenyl-1-(phenylsulfanyl)naphtho[2,1–b]furan (345 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 448–449 K; Rf = 0.60 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The distances of C—C in the solvated benzene ring were restrained to 1.40 (1) Å using command DFIX.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. [Symmetry code: (i) -x+1, -y, -z+2.]
[Figure 2] Fig. 2. The ππ, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.]
7-Bromo-2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan benzene hemisolvate top
Crystal data top
C24H15BrO2S·0.5C6H6Z = 2
Mr = 486.38F(000) = 494
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.154 (1) ÅCell parameters from 3339 reflections
b = 10.268 (2) Åθ = 2.4–26.4°
c = 13.771 (2) ŵ = 1.98 mm1
α = 80.656 (2)°T = 298 K
β = 86.431 (2)°Block, colorless
γ = 75.377 (2)°0.40 × 0.10 × 0.10 mm
V = 1100.6 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3870 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.504, Tmax = 0.826l = 1616
8221 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.6613P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.74 e Å3
Crystal data top
C24H15BrO2S·0.5C6H6γ = 75.377 (2)°
Mr = 486.38V = 1100.6 (3) Å3
Triclinic, P1Z = 2
a = 8.154 (1) ÅMo Kα radiation
b = 10.268 (2) ŵ = 1.98 mm1
c = 13.771 (2) ÅT = 298 K
α = 80.656 (2)°0.40 × 0.10 × 0.10 mm
β = 86.431 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3870 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2968 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.826Rint = 0.022
8221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
3870 reflectionsΔρmin = 0.74 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.02842 (5)0.72284 (4)0.21176 (3)0.06839 (16)
S0.47922 (8)0.81504 (7)0.68119 (5)0.03579 (18)
O10.5475 (2)0.41820 (18)0.70208 (14)0.0414 (5)
O20.4093 (2)0.90091 (19)0.58833 (15)0.0458 (5)
C10.5365 (3)0.6416 (3)0.66622 (19)0.0329 (6)
C20.6310 (3)0.5754 (3)0.58705 (19)0.0338 (6)
C30.7147 (3)0.6160 (3)0.4973 (2)0.0351 (6)
C40.7098 (4)0.7522 (3)0.4566 (2)0.0402 (7)
H40.64420.82260.48740.048*
C50.8001 (4)0.7824 (3)0.3723 (2)0.0440 (7)
H50.79660.87250.34650.053*
C60.8974 (4)0.6769 (4)0.3254 (2)0.0459 (7)
C70.8991 (4)0.5447 (3)0.3587 (2)0.0475 (8)
H70.96170.47670.32460.057*
C80.8064 (3)0.5098 (3)0.4450 (2)0.0395 (7)
C90.8021 (4)0.3721 (3)0.4790 (2)0.0486 (8)
H90.86110.30480.44320.058*
C100.7148 (4)0.3359 (3)0.5616 (2)0.0475 (7)
H100.71020.24600.58230.057*
C110.6323 (3)0.4400 (3)0.6141 (2)0.0386 (6)
C120.4902 (3)0.5427 (3)0.7334 (2)0.0362 (6)
C130.3985 (3)0.5386 (3)0.8286 (2)0.0369 (6)
C140.3248 (4)0.4299 (3)0.8606 (2)0.0483 (8)
H140.33490.36200.82180.058*
C150.2368 (4)0.4225 (4)0.9498 (2)0.0558 (9)
H150.18920.34910.97080.067*
C160.2190 (4)0.5227 (4)1.0078 (2)0.0545 (8)
H160.15710.51841.06680.065*
C170.2934 (4)0.6293 (3)0.9780 (2)0.0487 (8)
H170.28330.69641.01760.058*
C180.3836 (4)0.6372 (3)0.8893 (2)0.0438 (7)
H180.43450.70910.87020.053*
C190.6897 (3)0.8360 (3)0.6940 (2)0.0360 (6)
C200.7429 (4)0.9400 (3)0.6352 (2)0.0482 (8)
H200.67400.99700.58640.058*
C210.9020 (4)0.9576 (4)0.6506 (3)0.0625 (9)
H210.94171.02540.61010.075*
C221.0016 (4)0.8762 (4)0.7248 (3)0.0636 (10)
H221.10700.89030.73530.076*
C230.9455 (4)0.7741 (4)0.7834 (3)0.0593 (9)
H231.01300.71910.83370.071*
C240.7895 (4)0.7527 (3)0.7681 (2)0.0476 (7)
H240.75190.68290.80740.057*
C250.599 (4)0.0294 (11)0.9196 (17)0.195 (5)
H250.66560.05030.86480.233*
C260.432 (5)0.0346 (11)0.9090 (14)0.191 (5)
H260.38620.05750.84660.229*
C270.3318 (17)0.0065 (14)0.989 (3)0.204 (5)
H270.21770.01180.98100.245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0633 (2)0.1022 (3)0.0468 (2)0.0310 (2)0.01776 (16)0.02234 (19)
S0.0340 (4)0.0318 (4)0.0395 (4)0.0043 (3)0.0015 (3)0.0064 (3)
O10.0450 (11)0.0316 (10)0.0488 (12)0.0119 (9)0.0004 (9)0.0058 (9)
O20.0412 (11)0.0394 (11)0.0493 (12)0.0007 (9)0.0051 (9)0.0019 (9)
C10.0308 (14)0.0307 (14)0.0374 (15)0.0069 (11)0.0039 (11)0.0050 (12)
C20.0304 (14)0.0321 (15)0.0382 (15)0.0040 (11)0.0042 (11)0.0078 (12)
C30.0296 (14)0.0386 (16)0.0379 (15)0.0054 (12)0.0032 (11)0.0122 (13)
C40.0390 (15)0.0408 (17)0.0406 (16)0.0072 (13)0.0020 (12)0.0109 (13)
C50.0438 (16)0.0482 (18)0.0411 (17)0.0133 (14)0.0013 (13)0.0081 (14)
C60.0370 (16)0.067 (2)0.0376 (16)0.0148 (15)0.0028 (13)0.0161 (15)
C70.0379 (16)0.061 (2)0.0458 (18)0.0050 (15)0.0007 (13)0.0255 (16)
C80.0324 (14)0.0437 (17)0.0432 (16)0.0031 (13)0.0054 (12)0.0172 (14)
C90.0453 (17)0.0418 (18)0.059 (2)0.0006 (14)0.0038 (15)0.0248 (15)
C100.0506 (18)0.0345 (17)0.058 (2)0.0077 (14)0.0061 (15)0.0115 (15)
C110.0372 (15)0.0357 (16)0.0438 (16)0.0082 (13)0.0051 (13)0.0081 (13)
C120.0324 (14)0.0357 (16)0.0409 (16)0.0086 (12)0.0059 (12)0.0050 (13)
C130.0325 (14)0.0393 (16)0.0380 (16)0.0101 (12)0.0064 (12)0.0008 (13)
C140.0516 (18)0.0526 (19)0.0446 (18)0.0212 (15)0.0074 (14)0.0030 (15)
C150.058 (2)0.062 (2)0.0495 (19)0.0296 (17)0.0002 (16)0.0068 (17)
C160.0504 (19)0.070 (2)0.0393 (17)0.0151 (17)0.0028 (14)0.0013 (17)
C170.0518 (18)0.0525 (19)0.0388 (17)0.0080 (15)0.0019 (14)0.0061 (14)
C180.0456 (17)0.0441 (17)0.0413 (17)0.0136 (14)0.0035 (13)0.0004 (14)
C190.0354 (14)0.0325 (15)0.0400 (16)0.0052 (12)0.0016 (12)0.0097 (12)
C200.0523 (19)0.0350 (17)0.058 (2)0.0147 (14)0.0078 (15)0.0010 (14)
C210.059 (2)0.050 (2)0.084 (3)0.0277 (18)0.0003 (19)0.0043 (19)
C220.0402 (18)0.060 (2)0.096 (3)0.0156 (17)0.0098 (19)0.018 (2)
C230.0481 (19)0.058 (2)0.069 (2)0.0060 (17)0.0187 (17)0.0054 (18)
C240.0461 (18)0.0440 (18)0.0513 (19)0.0105 (15)0.0059 (14)0.0023 (15)
C250.28 (2)0.110 (6)0.176 (15)0.006 (9)0.013 (10)0.058 (7)
C260.268 (19)0.109 (6)0.179 (15)0.019 (10)0.068 (14)0.052 (8)
C270.211 (11)0.117 (7)0.281 (16)0.002 (8)0.05 (2)0.074 (10)
Geometric parameters (Å, º) top
Br—C61.902 (3)C14—C151.385 (4)
S—O21.486 (2)C14—H140.9300
S—C11.767 (3)C15—C161.376 (5)
S—C191.805 (3)C15—H150.9300
O1—C111.371 (3)C16—C171.375 (4)
O1—C121.375 (3)C16—H160.9300
C1—C121.369 (4)C17—C181.388 (4)
C1—C21.455 (4)C17—H170.9300
C2—C111.377 (4)C18—H180.9300
C2—C31.428 (4)C19—C201.376 (4)
C3—C41.411 (4)C19—C241.379 (4)
C3—C81.429 (4)C20—C211.387 (4)
C4—C51.370 (4)C20—H200.9300
C4—H40.9300C21—C221.373 (5)
C5—C61.396 (4)C21—H210.9300
C5—H50.9300C22—C231.371 (5)
C6—C71.357 (4)C22—H220.9300
C7—C81.414 (4)C23—C241.379 (4)
C7—H70.9300C23—H230.9300
C8—C91.423 (4)C24—H240.9300
C9—C101.354 (4)C25—C261.37 (5)
C9—H90.9300C25—C27i1.37 (4)
C10—C111.396 (4)C25—H250.9300
C10—H100.9300C26—C271.37 (4)
C12—C131.468 (4)C26—H260.9300
C13—C181.391 (4)C27—C25i1.37 (4)
C13—C141.396 (4)C27—H270.9300
O2—S—C1110.10 (12)C15—C14—C13120.4 (3)
O2—S—C19107.93 (12)C15—C14—H14119.8
C1—S—C1997.94 (12)C13—C14—H14119.8
C11—O1—C12106.8 (2)C16—C15—C14120.7 (3)
C12—C1—C2107.4 (2)C16—C15—H15119.7
C12—C1—S122.2 (2)C14—C15—H15119.7
C2—C1—S130.4 (2)C17—C16—C15119.6 (3)
C11—C2—C3119.0 (2)C17—C16—H16120.2
C11—C2—C1104.3 (2)C15—C16—H16120.2
C3—C2—C1136.7 (2)C16—C17—C18120.3 (3)
C4—C3—C2124.6 (2)C16—C17—H17119.8
C4—C3—C8118.6 (3)C18—C17—H17119.8
C2—C3—C8116.7 (3)C17—C18—C13120.7 (3)
C5—C4—C3121.0 (3)C17—C18—H18119.7
C5—C4—H4119.5C13—C18—H18119.7
C3—C4—H4119.5C20—C19—C24121.2 (3)
C4—C5—C6119.6 (3)C20—C19—S119.9 (2)
C4—C5—H5120.2C24—C19—S118.7 (2)
C6—C5—H5120.2C19—C20—C21118.4 (3)
C7—C6—C5121.6 (3)C19—C20—H20120.8
C7—C6—Br120.2 (2)C21—C20—H20120.8
C5—C6—Br118.2 (2)C22—C21—C20120.8 (3)
C6—C7—C8120.4 (3)C22—C21—H21119.6
C6—C7—H7119.8C20—C21—H21119.6
C8—C7—H7119.8C23—C22—C21119.9 (3)
C7—C8—C9121.1 (3)C23—C22—H22120.0
C7—C8—C3118.6 (3)C21—C22—H22120.0
C9—C8—C3120.3 (3)C22—C23—C24120.3 (3)
C10—C9—C8122.2 (3)C22—C23—H23119.8
C10—C9—H9118.9C24—C23—H23119.8
C8—C9—H9118.9C23—C24—C19119.3 (3)
C9—C10—C11116.7 (3)C23—C24—H24120.3
C9—C10—H10121.7C19—C24—H24120.3
C11—C10—H10121.7C26—C25—C27i119.8 (11)
O1—C11—C2111.6 (2)C26—C25—H25120.1
O1—C11—C10123.5 (3)C27i—C25—H25120.1
C2—C11—C10124.9 (3)C25—C26—C27120.9 (12)
C1—C12—O1109.9 (2)C25—C26—H26119.5
C1—C12—C13135.7 (3)C27—C26—H26119.5
O1—C12—C13114.5 (2)C26—C27—C25i119.3 (11)
C18—C13—C14118.3 (3)C26—C27—H27120.4
C18—C13—C12123.1 (3)C25i—C27—H27120.4
C14—C13—C12118.6 (3)
O2—S—C1—C12132.3 (2)C9—C10—C11—O1176.0 (3)
C19—S—C1—C12115.2 (2)C9—C10—C11—C21.2 (4)
O2—S—C1—C246.3 (3)C2—C1—C12—O10.6 (3)
C19—S—C1—C266.2 (3)S—C1—C12—O1178.36 (17)
C12—C1—C2—C110.4 (3)C2—C1—C12—C13178.5 (3)
S—C1—C2—C11178.4 (2)S—C1—C12—C132.6 (4)
C12—C1—C2—C3179.2 (3)C11—O1—C12—C10.5 (3)
S—C1—C2—C32.0 (5)C11—O1—C12—C13178.8 (2)
C11—C2—C3—C4173.8 (3)C1—C12—C13—C1822.7 (5)
C1—C2—C3—C46.6 (5)O1—C12—C13—C18156.3 (3)
C11—C2—C3—C84.8 (4)C1—C12—C13—C14158.2 (3)
C1—C2—C3—C8174.8 (3)O1—C12—C13—C1422.7 (3)
C2—C3—C4—C5177.0 (3)C18—C13—C14—C151.1 (4)
C8—C3—C4—C54.4 (4)C12—C13—C14—C15179.8 (3)
C3—C4—C5—C60.6 (4)C13—C14—C15—C160.7 (5)
C4—C5—C6—C73.0 (4)C14—C15—C16—C171.8 (5)
C4—C5—C6—Br177.4 (2)C15—C16—C17—C181.1 (5)
C5—C6—C7—C82.4 (4)C16—C17—C18—C130.7 (5)
Br—C6—C7—C8177.9 (2)C14—C13—C18—C171.8 (4)
C6—C7—C8—C9177.7 (3)C12—C13—C18—C17179.1 (3)
C6—C7—C8—C31.5 (4)O2—S—C19—C2013.1 (3)
C4—C3—C8—C74.9 (4)C1—S—C19—C20127.3 (2)
C2—C3—C8—C7176.4 (2)O2—S—C19—C24171.6 (2)
C4—C3—C8—C9174.4 (3)C1—S—C19—C2457.4 (2)
C2—C3—C8—C94.3 (4)C24—C19—C20—C211.5 (5)
C7—C8—C9—C10179.7 (3)S—C19—C20—C21176.7 (2)
C3—C8—C9—C101.0 (4)C19—C20—C21—C222.2 (5)
C8—C9—C10—C111.7 (4)C20—C21—C22—C231.4 (6)
C12—O1—C11—C20.3 (3)C21—C22—C23—C240.0 (6)
C12—O1—C11—C10177.2 (3)C22—C23—C24—C190.7 (5)
C3—C2—C11—O1179.7 (2)C20—C19—C24—C230.0 (5)
C1—C2—C11—O10.0 (3)S—C19—C24—C23175.3 (2)
C3—C2—C11—C102.2 (4)C27i—C25—C26—C271.1 (19)
C1—C2—C11—C10177.5 (3)C25—C26—C27—C25i1.1 (19)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1ii0.932.873.740 (4)156
C20—H20···O2iii0.932.523.392 (4)155
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC24H15BrO2S·0.5C6H6
Mr486.38
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.154 (1), 10.268 (2), 13.771 (2)
α, β, γ (°)80.656 (2), 86.431 (2), 75.377 (2)
V3)1100.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.504, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
8221, 3870, 2968
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.06
No. of reflections3870
No. of parameters280
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.74

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.932.873.740 (4)156.3
C20—H20···O2ii0.932.523.392 (4)155.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819–8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds