organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,4-di­carboxylic acid–N,N-di­methyl­acetamide (1/2)

aCollege of Materials Science and Chemical Engineering, Zhejiang University, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: guoxia0502@gmail.com

(Received 8 June 2009; accepted 3 July 2009; online 8 July 2009)

The asymmetric unit of title compound, C8H6O4·2C4H9NO, contains one half-mol­ecule (an inversion centre in P21/n generates the other half of the molecule) of terephthalic acid (TA) and one mol­ecule of N,N-dimethyl­acetamide (DMAC). The DMAC mol­ecules are linked to TA by strong O—H⋯O hydrogen bonds.

Related literature

For the crystal structure of terephthalic acid-bis­(N,N-dimethyl­formamide), see: Dale & Elsegood (2004[Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.]). For the polymorphism of terephthalic acid, see: Bailey & Brown (1967[Bailey, M. & Brown, C. J. (1967). Acta Cryst. 22, 387-391.]); Sledz et al. (2001[Sledz, M., Janczak, J. & Kubiak, R. (2001). J. Mol. Struct. 595, 77-82.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6O4·2C4H9NO

  • Mr = 340.37

  • Monoclinic, P 21 /n

  • a = 10.191 (2) Å

  • b = 8.5228 (17) Å

  • c = 10.719 (2) Å

  • β = 110.67 (3)°

  • V = 871.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.60 × 0.51 × 0.38 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.940, Tmax = 0.961

  • 6605 measured reflections

  • 1522 independent reflections

  • 1395 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.08

  • 1522 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.91 (3) 1.65 (3) 2.551 (2) 173 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Crtyst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Crtyst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Crtyst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Terephthalic acid (TA) is an important intermediate in the production of polyesters for plastics and fiber applications. According to Bailey & Brown (1967), TA exists in two polymorphic modifications (forms 1 and 2), both triclinic. Recently Sledz et al. (2001) reported a new crystalline form of TA which is monoclinic and designated as form 3.

N,N-Dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC) are the two of a few organic solvents capable of dissolving TA. The crystal structure of the 2:1 DMF solvate of terephthalic acid was reported recently (Dale & Elsegood, 2004). The solvent molecules and TA form a centrosymmetric descrete planar assembly with both carboxylic acid groups hydrogen bonded to DMF molecules via R22(7) motif (O—H···O/C—H···O interactions). Recently we have obtained single crystals of the DMAC solvate of TA and here we report its crystal structure.

The asymmetric unit of title compound contains one half-molecule of TA and one N, N-dimethyl acetamide (DMAC) molecule (Fig. 2). The DMAC molecules are linked to TA by strong O—H···O hydrogen bonds (Fig.3 and Table 1), which may be effective in stablilizing the crystal structure. The carboxylic group is roughly coplanar with the benzene ring forming dihedral angle of 0.6 (3)° . The dihedral angle between TA and the dimethylacetamide molecule is 21.7 (1)°.

Related literature top

For the crystal structure of terephthalic acid-bis(N,N-dimethylforamide), see: Dale & Elsegood (2004). For the polymorphism of terephthalic acid, see: Bailey & Brown (1967); Sledz et al. ( (2001).

Experimental top

Single crystals were obtained by dissolving TA (1.0 g) in DMAC (20 ml) at 80°C and then allowing the solvent to cool to room temperature. The sample proved unstable in the air.

Refinement top

The H atom of the carboxylic group was located from a difference Fourier map and fully refined. The remaining H atoms were placed in geometrically calculated positions and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing 50% probability displacement ellipsoids. Symmetry operation for atoms with '#': -x,-y,-z + 1.
[Figure 2] Fig. 2. The packing diagram for the title compound; dashed lines indicate hydrogen bonds.
Benzene-1,4-dicarboxylic acid–N,N-dimethylacetamide (1/2) top
Crystal data top
C8H6O4·2C4H9NOF(000) = 364
Mr = 340.37Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6873 reflections
a = 10.191 (2) Åθ = 3.1–27.5°
b = 8.5228 (17) ŵ = 0.10 mm1
c = 10.719 (2) ÅT = 113 K
β = 110.67 (3)°Block, colorless
V = 871.0 (3) Å30.60 × 0.51 × 0.38 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1522 independent reflections
Radiation source: fine-focus sealed tube1395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 910
Tmin = 0.940, Tmax = 0.961l = 1212
6605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6867P]
where P = (Fo2 + 2Fc2)/3
1522 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H6O4·2C4H9NOV = 871.0 (3) Å3
Mr = 340.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.191 (2) ŵ = 0.10 mm1
b = 8.5228 (17) ÅT = 113 K
c = 10.719 (2) Å0.60 × 0.51 × 0.38 mm
β = 110.67 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1522 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1395 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.961Rint = 0.014
6605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.58 e Å3
1522 reflectionsΔρmin = 0.26 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74204 (15)0.07465 (18)0.88639 (15)0.0233 (4)
O10.95506 (11)0.13078 (14)0.88125 (11)0.0207 (3)
O20.30574 (13)0.23616 (15)0.52621 (12)0.0248 (3)
O30.35578 (12)0.10972 (15)0.72025 (11)0.0237 (3)
C10.89721 (19)0.2372 (2)1.06449 (18)0.0266 (4)
H1A0.90970.16701.13780.040*
H1B0.82030.30671.05570.040*
H1C0.98130.29731.08060.040*
C20.86637 (18)0.1442 (2)0.93832 (17)0.0224 (4)
C30.71443 (18)0.0191 (2)0.76458 (17)0.0241 (4)
H3A0.72480.04580.69540.036*
H3B0.62060.05980.73630.036*
H3C0.77990.10460.78240.036*
C40.63337 (19)0.0830 (3)0.9455 (2)0.0304 (5)
H4A0.67640.08881.04080.046*
H4B0.57550.00900.92160.046*
H4C0.57680.17460.91310.046*
C50.08828 (17)0.03522 (19)0.37140 (16)0.0171 (4)
H50.14770.05860.28520.020*
C60.04270 (17)0.10394 (19)0.42154 (16)0.0175 (4)
H6A0.07120.17340.36920.021*
C70.13228 (16)0.06918 (18)0.55081 (15)0.0152 (4)
C80.27579 (16)0.13973 (18)0.60876 (15)0.0163 (4)
H20.394 (3)0.276 (3)0.563 (2)0.052 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0191 (8)0.0254 (8)0.0268 (8)0.0007 (6)0.0097 (6)0.0006 (6)
O10.0166 (6)0.0255 (7)0.0209 (6)0.0043 (5)0.0080 (5)0.0014 (5)
O20.0174 (7)0.0324 (7)0.0224 (7)0.0083 (5)0.0044 (5)0.0055 (5)
O30.0182 (6)0.0282 (7)0.0200 (6)0.0047 (5)0.0012 (5)0.0035 (5)
C10.0258 (9)0.0256 (10)0.0299 (10)0.0037 (7)0.0117 (8)0.0079 (7)
C20.0227 (9)0.0179 (9)0.0248 (9)0.0013 (7)0.0060 (7)0.0051 (7)
C30.0227 (9)0.0265 (10)0.0205 (9)0.0061 (7)0.0047 (7)0.0023 (7)
C40.0192 (9)0.0407 (11)0.0344 (11)0.0024 (8)0.0133 (8)0.0086 (8)
C50.0168 (8)0.0189 (8)0.0145 (8)0.0012 (6)0.0043 (6)0.0011 (6)
C60.0187 (8)0.0176 (8)0.0171 (8)0.0005 (6)0.0076 (6)0.0018 (6)
C70.0140 (8)0.0156 (8)0.0170 (8)0.0014 (6)0.0066 (6)0.0022 (6)
C80.0164 (8)0.0159 (8)0.0175 (8)0.0009 (6)0.0072 (6)0.0017 (6)
Geometric parameters (Å, º) top
N1—C21.330 (2)C3—H3B0.9600
N1—C41.459 (2)C3—H3C0.9600
N1—C31.471 (2)C4—H4A0.9600
O1—C21.263 (2)C4—H4B0.9600
O2—C81.320 (2)C4—H4C0.9600
O2—H20.91 (3)C5—C61.381 (2)
O3—C81.213 (2)C5—C7i1.397 (2)
C1—C21.502 (2)C5—H50.9300
C1—H1A0.9600C6—C71.396 (2)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—C5i1.397 (2)
C3—H3A0.9600C7—C81.498 (2)
C2—N1—C4123.61 (16)N1—C4—H4A109.5
C2—N1—C3117.98 (15)N1—C4—H4B109.5
C4—N1—C3118.39 (14)H4A—C4—H4B109.5
C8—O2—H2111.4 (16)N1—C4—H4C109.5
C2—C1—H1A109.5H4A—C4—H4C109.5
C2—C1—H1B109.5H4B—C4—H4C109.5
H1A—C1—H1B109.5C6—C5—C7i120.51 (15)
C2—C1—H1C109.5C6—C5—H5119.7
H1A—C1—H1C109.5C7i—C5—H5119.7
H1B—C1—H1C109.5C5—C6—C7119.99 (15)
O1—C2—N1119.73 (16)C5—C6—H6A120.0
O1—C2—C1121.74 (15)C7—C6—H6A120.0
N1—C2—C1118.53 (16)C6—C7—C5i119.50 (15)
N1—C3—H3A109.5C6—C7—C8121.80 (15)
N1—C3—H3B109.5C5i—C7—C8118.70 (14)
H3A—C3—H3B109.5O3—C8—O2123.91 (15)
N1—C3—H3C109.5O3—C8—C7122.83 (15)
H3A—C3—H3C109.5O2—C8—C7113.26 (14)
H3B—C3—H3C109.5
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.91 (3)1.65 (3)2.551 (2)173 (2)
Symmetry code: (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H6O4·2C4H9NO
Mr340.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)10.191 (2), 8.5228 (17), 10.719 (2)
β (°) 110.67 (3)
V3)871.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.51 × 0.38
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.940, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
6605, 1522, 1395
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.08
No. of reflections1522
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.91 (3)1.65 (3)2.551 (2)173 (2)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Xu Wei for the X-ray data collection and would like to express sincere thanks to Professor Li Xi for providing the study environment and helpful comments.

References

First citationBailey, M. & Brown, C. J. (1967). Acta Cryst. 22, 387–391.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444–o448.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Crtyst. A64, 112-122.  CrossRef CAS Google Scholar
First citationSledz, M., Janczak, J. & Kubiak, R. (2001). J. Mol. Struct. 595, 77–82.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds