organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-N3-phenyl­pyrazine-2,3-di­amine

aSchool of Chemistry and Chemical Engineering, Taishan Medical University, Tai'an 271016, People's Republic of China
*Correspondence e-mail: zhuxh007@163.com

(Received 15 June 2009; accepted 20 July 2009; online 25 July 2009)

In the title compound, C10H9BrN4, the dihedral angle between the benzene and pyrazine rings is 61.34 (5)°. Inter­molecular N—H⋯N hydrogen bonds and N—H⋯π inter­actions assemble the mol­ecules into a three-dimensional network structure.

Related literature

For Cu or Pd catalysed C–N cross-coupling reactions, see: Fors et al. (2009[Fors, B. P., Davis, N. R. & Buchwald, S. L. (2009). J. Am. Chem. Soc. 131, 5766-5768.]); Liu et al. (2007[Liu, Y. F., Bai, Y. J., Zhang, J., Li, Y. Y., Jiao, J. P. & Qi, X. L. (2007). Eur. J. Org. Chem., 6084-6088.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9BrN4

  • Mr = 265.12

  • Monoclinic, P 21 /c

  • a = 7.4834 (8) Å

  • b = 15.4038 (17) Å

  • c = 9.2079 (10) Å

  • β = 91.307 (2)°

  • V = 1061.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.596, Tmax = 0.700

  • 5494 measured reflections

  • 1871 independent reflections

  • 1555 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.00

  • 1871 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1BCg1i 0.86 2.63 3.436 (3) 157
N1—H1A⋯N2ii 0.86 2.22 3.084 (3) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1. Cg1 is the centroid of the C5–C10 ring.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cu or Pd catalyzed C—N cross-coupling reactions were studied recently (Liu et al., 2007; Fors et al., 2009), which reported that catalysts using certain ligands allow for the C—N cross-coupling reactions. Different to them, we got a cross-coupling product with high selectivity under microwave without catalyst.

Here we report the crystal structure of the title compound. In (I) (Fig.1), the bond length to the bridging NH group are 1.377 (3) and 1.420 (3) Å. Moreover, intermolecular typical N—H···N (N···N 3.084 (3) Å) hydrogen bonds and N—H···π [H···π 2.633 (2) Å] interaction assemble molecules into a two-dimensional network structure.

Related literature top

For Cu or Pd catalysed C–N cross-coupling reactions, see: Fors et al. (2009); Liu et al. (2007). Cg1 is the centroid of [please define].

Experimental top

5-Bromo-2-aminopyrazine (10 mmol) and aniline (40 mmol) were added to a reaction kettle, then reacted 2 h at 413 K under microwave operation. The product was purified on a SiO2 flash column to give a title product (yield 31%). Crystals of the title compound suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement top

The C–H and N–H hydrogen atoms were placed in calculated positions, with distances C—H = 0.93 Å, N—H = 0.87 Å. and Uiso(H) = 1.2 Ueq (C, N). Initially positions of the amino H atoms were refined but in the final cycles the N—H distances were constrained to 0.87 Å and all H atoms were treated as riding with Uiso(H) values of 1.5Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional network structure formed by N—H···N hydrogen bonds and N—H···π interactions.
5-Bromo-N3-phenylpyrazine-2,3-diamine top
Crystal data top
C10H9BrN4F(000) = 528
Mr = 265.12Dx = 1.660 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2474 reflections
a = 7.4834 (8) Åθ = 2.6–27.6°
b = 15.4038 (17) ŵ = 3.85 mm1
c = 9.2079 (10) ÅT = 293 K
β = 91.307 (2)°Block, colorless
V = 1061.1 (2) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1871 independent reflections
Radiation source: fine-focus sealed tube1555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.596, Tmax = 0.700k = 1718
5494 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.025P)2 + 0.6504P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
1871 reflectionsΔρmax = 0.33 e Å3
140 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0241 (11)
Crystal data top
C10H9BrN4V = 1061.1 (2) Å3
Mr = 265.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4834 (8) ŵ = 3.85 mm1
b = 15.4038 (17) ÅT = 293 K
c = 9.2079 (10) Å0.15 × 0.12 × 0.10 mm
β = 91.307 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1555 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.700Rint = 0.022
5494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
1871 reflectionsΔρmin = 0.33 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05901 (4)0.351301 (18)1.09071 (3)0.05020 (14)
N10.1466 (3)0.39455 (14)0.4791 (2)0.0455 (5)
H1A0.10000.43880.43340.046 (8)*
H1B0.24000.36760.44720.075 (11)*
N20.0254 (3)0.43567 (13)0.6710 (2)0.0404 (5)
N30.1484 (2)0.31467 (12)0.84959 (19)0.0319 (4)
N40.3193 (3)0.27272 (13)0.6497 (2)0.0420 (5)
H40.29800.25950.55910.063 (9)*
C10.1017 (3)0.38587 (14)0.6195 (2)0.0317 (5)
C20.1899 (3)0.32331 (14)0.7117 (2)0.0302 (5)
C30.0152 (3)0.36556 (15)0.8955 (2)0.0343 (5)
C40.0699 (3)0.42447 (16)0.8104 (3)0.0423 (6)
H4A0.16080.45790.84880.051*
C50.4259 (3)0.21097 (15)0.7267 (2)0.0365 (6)
C60.4269 (4)0.12553 (16)0.6809 (3)0.0446 (6)
H60.35650.10840.60140.054*
C70.5329 (4)0.06590 (19)0.7538 (3)0.0564 (8)
H70.53380.00840.72290.068*
C80.6367 (4)0.0902 (2)0.8710 (3)0.0613 (8)
H80.70560.04910.92090.074*
C90.6390 (4)0.1748 (2)0.9145 (3)0.0589 (8)
H90.71080.19160.99340.071*
C100.5348 (3)0.23602 (18)0.8419 (3)0.0468 (6)
H100.53830.29380.87090.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0541 (2)0.0615 (2)0.03565 (17)0.00683 (14)0.01461 (11)0.00123 (12)
N10.0648 (15)0.0406 (12)0.0314 (11)0.0182 (11)0.0047 (10)0.0082 (9)
N20.0466 (13)0.0353 (11)0.0392 (12)0.0102 (9)0.0014 (9)0.0047 (9)
N30.0345 (11)0.0327 (10)0.0288 (10)0.0035 (8)0.0036 (8)0.0018 (8)
N40.0504 (13)0.0451 (12)0.0310 (11)0.0194 (10)0.0094 (9)0.0070 (9)
C10.0369 (13)0.0262 (11)0.0320 (12)0.0014 (10)0.0003 (10)0.0008 (9)
C20.0330 (13)0.0265 (11)0.0312 (12)0.0008 (9)0.0013 (10)0.0001 (9)
C30.0375 (13)0.0359 (13)0.0297 (12)0.0004 (10)0.0048 (10)0.0004 (10)
C40.0433 (15)0.0400 (14)0.0440 (15)0.0124 (11)0.0085 (11)0.0005 (11)
C50.0339 (13)0.0404 (14)0.0356 (12)0.0084 (10)0.0107 (10)0.0087 (11)
C60.0408 (15)0.0416 (15)0.0516 (16)0.0068 (11)0.0040 (12)0.0028 (12)
C70.0502 (17)0.0404 (15)0.079 (2)0.0149 (13)0.0099 (15)0.0084 (14)
C80.0492 (18)0.069 (2)0.066 (2)0.0229 (15)0.0049 (15)0.0211 (16)
C90.0419 (16)0.084 (2)0.0504 (17)0.0121 (15)0.0041 (13)0.0015 (15)
C100.0438 (15)0.0478 (15)0.0489 (15)0.0067 (12)0.0064 (12)0.0016 (13)
Geometric parameters (Å, º) top
Br1—C31.906 (2)C4—H4A0.9300
N1—C11.349 (3)C5—C101.378 (4)
N1—H1A0.8699C5—C61.382 (3)
N1—H1B0.8700C6—C71.378 (4)
N2—C11.319 (3)C6—H60.9300
N2—C41.344 (3)C7—C81.368 (4)
N3—C21.320 (3)C7—H70.9300
N3—C31.344 (3)C8—C91.364 (4)
N4—C21.377 (3)C8—H80.9300
N4—C51.420 (3)C9—C101.385 (4)
N4—H40.8700C9—H90.9300
C1—C21.436 (3)C10—H100.9300
C3—C41.349 (3)
C1—N1—H1A115.8C3—C4—H4A119.4
C1—N1—H1B119.8C10—C5—C6119.6 (2)
H1A—N1—H1B121.8C10—C5—N4120.8 (2)
C1—N2—C4117.7 (2)C6—C5—N4119.5 (2)
C2—N3—C3115.85 (19)C7—C6—C5119.5 (3)
C2—N4—C5124.36 (19)C7—C6—H6120.2
C2—N4—H4114.5C5—C6—H6120.2
C5—N4—H4114.3C8—C7—C6120.8 (3)
N2—C1—N1119.0 (2)C8—C7—H7119.6
N2—C1—C2120.2 (2)C6—C7—H7119.6
N1—C1—C2120.8 (2)C9—C8—C7119.7 (3)
N3—C2—N4121.6 (2)C9—C8—H8120.1
N3—C2—C1121.5 (2)C7—C8—H8120.1
N4—C2—C1116.92 (19)C8—C9—C10120.4 (3)
N3—C3—C4123.6 (2)C8—C9—H9119.8
N3—C3—Br1117.62 (16)C10—C9—H9119.8
C4—C3—Br1118.81 (18)C5—C10—C9119.8 (3)
N2—C4—C3121.2 (2)C5—C10—H10120.1
N2—C4—H4A119.4C9—C10—H10120.1
C4—N2—C1—N1178.7 (2)N3—C3—C4—N20.3 (4)
C4—N2—C1—C21.1 (3)Br1—C3—C4—N2178.49 (19)
C3—N3—C2—N4177.5 (2)C2—N4—C5—C1059.7 (3)
C3—N3—C2—C12.3 (3)C2—N4—C5—C6123.5 (3)
C5—N4—C2—N33.5 (4)C10—C5—C6—C71.9 (4)
C5—N4—C2—C1176.6 (2)N4—C5—C6—C7178.8 (2)
N2—C1—C2—N30.9 (3)C5—C6—C7—C80.1 (4)
N1—C1—C2—N3179.4 (2)C6—C7—C8—C91.6 (5)
N2—C1—C2—N4179.0 (2)C7—C8—C9—C100.9 (5)
N1—C1—C2—N40.8 (3)C6—C5—C10—C92.6 (4)
C2—N3—C3—C42.1 (3)N4—C5—C10—C9179.4 (2)
C2—N3—C3—Br1176.66 (16)C8—C9—C10—C51.2 (4)
C1—N2—C4—C31.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cg1i0.862.633.436 (3)157
N1—H1A···N2ii0.862.223.084 (3)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H9BrN4
Mr265.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4834 (8), 15.4038 (17), 9.2079 (10)
β (°) 91.307 (2)
V3)1061.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.596, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
5494, 1871, 1555
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.00
No. of reflections1871
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cg1i0.862.633.436 (3)157
N1—H1A···N2ii0.862.223.084 (3)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1.
 

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFors, B. P., Davis, N. R. & Buchwald, S. L. (2009). J. Am. Chem. Soc. 131, 5766–5768.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y. F., Bai, Y. J., Zhang, J., Li, Y. Y., Jiao, J. P. & Qi, X. L. (2007). Eur. J. Org. Chem., 6084–6088.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds