organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1906-o1907

2-{(E)-[1-(2-Hy­droxy­ethyl)-3,3-di­methyl-3H-indol-1-ium-2-yl]vin­yl}-6-hy­droxy­meth­yl-4-nitro­phenolate dihydrate

aPO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, NM 87185, USA, bPO Box 969, MS 9403, Sandia National Laboratories, Livermore, CA 94551, USA, cPO Box 5800, MS 01455, Sandia National Laboratories, Albuquerque, NM 87185, USA, and dPO Box 5800, MS 0888, Sandia National Laboratories, Albuquerque, NM 87185, USA
*Correspondence e-mail: marodri@sandia.gov

(Received 6 July 2009; accepted 10 July 2009; online 18 July 2009)

The title merocyanine-type mol­ecule, C21H22N2O5·2H2O, crystallizes in a zwitterionic form and has an E configuration at the styryl C=C bond. The styryl part of the mol­ecule and the indolium ring are slightly twisted and form a dihedral angle of 13.4 (1)°. The 1.274 (3) Å C—O bond length in the phenolate fragment is the longest among similar mol­ecules. Hydrogen bonds between solvent water mol­ecules, two hydroxyl groups and the phenolate O atom dictate the packing arrangement of mol­ecules in the crystal and join the mol­ecules into a two-dimensional polymeric network which propagates parallel to (001). Four water mol­ecules and four hydr­oxy groups form a centrosymmetric homodromic cyclic motif of O—H⋯O hydrogen bonds. Another cyclic centrosymmetric motif is generated by four water mol­ecules and two phenolate O atoms.

Related literature

This structure is similar to the perviously reported trans-MEH compound, see: Raymo et al. (2003[Raymo, F. M., Giordani, S., White, A. J. P. & Williams, D. J. (2003). J. Org. Chem. 68, 4158-4169.]). For similar structures, see also: Aldoshin & Atovmyan (1985[Aldoshin, S. M. & Atovmyan, L. O. (1985). Bull. Acad. Sci. USSR Div. Chem. Sci. 34, 180-182.]), Hobley et al. (1999[Hobley, J., Malatesta, V., Millini, R., Montanari, L. & Parker Junior, W. O. N. (1999). Phys. Chem. Chem. Phys. 1, 3259-3267.]), Zou et al. (2003[Zou, W., Chen, P., Gao, Y. & Meng, J. (2003). Acta Cryst. E59, o337-o339.]). For the synthetic procedure, see: Raymo & Giordani (2001[Raymo, F. M. & Giordani, S. (2001). J. Am. Chem. Soc. 123, 4651-4652.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O5·2H2O

  • Mr = 418.44

  • Triclinic, [P \overline 1]

  • a = 7.377 (2) Å

  • b = 8.868 (2) Å

  • c = 16.817 (5) Å

  • α = 94.603 (5)°

  • β = 101.639 (6)°

  • γ = 102.140 (7)°

  • V = 1044.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 183 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.990

  • 7525 measured reflections

  • 3651 independent reflections

  • 2472 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.134

  • S = 1.02

  • 3651 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20B⋯O10i 0.96 1.80 2.739 (4) 166
O10—H10B⋯O2ii 0.95 1.81 2.750 (3) 172
O20—H20A⋯O2 0.95 1.78 2.714 (3) 167
O10—H10A⋯O1ii 0.95 1.87 2.811 (3) 165
O5—H5⋯O20iii 0.84 1.80 2.633 (3) 175
O1—H1⋯O5iv 0.84 1.90 2.734 (3) 176
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x+1, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: XSHELL (Bruker, 2000[Bruker (2000). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: XSHELL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Figure 1 shows an atomic displacement ellipsoid plot of the title compound. The zwitterionic molecule is nearly planar, with a 13.4 (1)o diheral angle tilt between the plane generated from the phenolate portions of the molecule as compared to the plane associated with the indole ring portion of the molecule. Thermal ellipsoids for most of the atoms are well defined. Only the O20 oxygen atom associated with one of two solvent water molecules shows some enlargement, and such enlargement is not unexpected. The title compound is similar to another merocyanine molecule (trans-MEH) as documented by Raymo & Giordani (2001) and Raymo et al. (2003), with the difference being that the title compound possesses an additional methanol group on the phenolate portion of the molecule. A review of similar structures which contain terminal alkoxy ligands (C—O-) shows C—O bond lengths in the range of 1.228 to 1.260 Angstroms; see Aldoshin & Atovmyan (1985), Hobley, et al. (1999), and Zou, et al. (2003). The C—O- bond for the title compound falls outside this range at 1.274 (3) Angstroms. This elongation is likely a result of H-bonding interactions as discussed below. Figure 2 shows the packing arrangement and intermolecular interactions for the title compound. One can see the nearly planar nature of the molecule from this perspective. There are two cyclic motifs assocated with the solvent water molecules in the structure. The ethanol group attached to the indole portion of the molecule is linked to the hydroxy O2 atom via hydrogen bonding interactions of the O10 solvent water. In addition, the intermolecular linkage of the molecules occurs via the O20 solvent water which connects the hydroxy O2 with the coordinated O10 solvent water. In addition, there is a second (Larger) cyclic motif generated by solvent water and OH groups from the hydroxymethyl and hydroxyethyl groups of the molecule. These H-bond interactions generate a two-dimensional polymeric network along the a-b plane of the structure. All O—H···O lengths and angles for these interactions are typical for hydrogen bonds as listed in Table 1.

Related literature top

This structure is similar to the perviously reported trans-MEH compound reported by Raymo et al. (2003). For similar structures, see also: Aldoshin & Atovmyan (1985), Hobley et al. (1999), Zou et al. (2003). For the synthetic procedure, see: Raymo & Giordani (2001).

Experimental top

The title compound was synthesized by condensation of 3-chloromethyl-5-nitrosalicylaldehyde and 9,9,9a-trimethyl-2,3,9,9a-tetrahydrooxazolo[3,2-a]indole in refluxing ethanol and then recrystallized from an aqueous 70% acetonitrile solution. For synthesis procedures of related compounds see Raymo & Giordani (2001).

Refinement top

H atoms present on the molecule were located in a straightforward manner using HFIX commands of SHELXL97 with attention to hybridization of the bound atom. The H atoms from water molecules were located in a difference Fourier map. They were refined using a riding-model approximation with C—H = 0.95-0.99 Å and O-H = 0.85-0.96 Å with Uiso(H)=1.2Ueq(C) except methyl group and water molecule, where Uiso(H)=1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: XSHELL (Bruker, 2000); molecular graphics: XSHELL (Bruker, 2000) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram for the title compound showing solvent water interactions. See text for details.
2-{(E)-[1-(2-Hydroxyethyl)-3,3-dimethyl-3H-indol-1-ium-2- yl]vinyl}-6-hydroxymethyl-4-nitrophenolate dihydrate top
Crystal data top
C21H22N2O5·2H2OZ = 2
Mr = 418.44F(000) = 444
Triclinic, P1Dx = 1.330 Mg m3
Dm = 1.31 (8) Mg m3
Dm measured by picnometer
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.377 (2) ÅCell parameters from 200 reflections
b = 8.868 (2) Åθ = 1–25°
c = 16.817 (5) ŵ = 0.10 mm1
α = 94.603 (5)°T = 183 K
β = 101.639 (6)°Block, dark red
γ = 102.140 (7)°0.10 × 0.10 × 0.10 mm
V = 1044.8 (5) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
3651 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 88
Tmin = 0.981, Tmax = 0.990k = 1010
7525 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.0096P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H22N2O5·2H2Oγ = 102.140 (7)°
Mr = 418.44V = 1044.8 (5) Å3
Triclinic, P1Z = 2
a = 7.377 (2) ÅMo Kα radiation
b = 8.868 (2) ŵ = 0.10 mm1
c = 16.817 (5) ÅT = 183 K
α = 94.603 (5)°0.10 × 0.10 × 0.10 mm
β = 101.639 (6)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3651 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2472 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.039
7525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3651 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4314 (3)0.7565 (2)0.27176 (12)0.0266 (5)
N20.7317 (3)0.3125 (2)0.07265 (13)0.0297 (5)
O10.3009 (3)0.8842 (2)0.40555 (12)0.0453 (5)
H10.31720.97300.39030.054*
O20.1195 (2)0.4576 (2)0.33751 (11)0.0348 (5)
O30.7048 (3)0.3290 (2)0.00334 (11)0.0399 (5)
O40.8914 (3)0.2639 (2)0.08513 (12)0.0439 (6)
O50.6302 (2)0.1775 (2)0.36144 (11)0.0376 (5)
H50.70150.22850.37870.045*
C10.5663 (3)0.8684 (3)0.24386 (15)0.0275 (6)
C20.7509 (4)0.9396 (3)0.28370 (17)0.0337 (7)
H2A0.80740.91500.33550.040*
C30.8489 (4)1.0488 (3)0.24380 (18)0.0392 (7)
H30.97551.10270.26940.047*
C40.7670 (4)1.0812 (3)0.16759 (18)0.0381 (7)
H40.83801.15640.14160.046*
C50.5822 (4)1.0052 (3)0.12871 (17)0.0331 (7)
H5A0.52671.02670.07600.040*
C60.4804 (3)0.8976 (3)0.16797 (15)0.0251 (6)
C70.2797 (3)0.8003 (3)0.14308 (14)0.0248 (6)
C80.2563 (4)0.6884 (3)0.06505 (15)0.0308 (6)
H8A0.26920.74820.01920.046*
H8B0.13020.61720.05290.046*
H8C0.35450.62850.07340.046*
C90.1368 (4)0.9048 (3)0.12986 (17)0.0355 (7)
H9A0.14980.97160.18100.053*
H9B0.00710.83980.11320.053*
H9C0.16250.96970.08710.053*
C100.2648 (3)0.7159 (3)0.21803 (15)0.0246 (6)
C110.4762 (4)0.7097 (3)0.35407 (15)0.0311 (6)
H11A0.60300.68510.36390.037*
H11B0.38130.61470.35750.037*
C120.4755 (4)0.8380 (3)0.41955 (16)0.0392 (7)
H12A0.49800.80060.47380.047*
H12B0.58040.92880.42030.047*
C130.1035 (3)0.6165 (3)0.23467 (15)0.0274 (6)
H130.11660.58110.28690.033*
C140.0685 (3)0.5680 (3)0.18168 (16)0.0275 (6)
H140.07600.59850.12840.033*
C150.2409 (3)0.4756 (3)0.19654 (15)0.0244 (6)
C160.3992 (3)0.4350 (3)0.13128 (15)0.0249 (6)
H160.38830.46510.07920.030*
C170.5708 (3)0.3522 (3)0.14124 (15)0.0249 (6)
C180.5931 (3)0.3052 (3)0.21741 (15)0.0252 (6)
H180.71420.25170.22370.030*
C190.4402 (4)0.3369 (3)0.28191 (15)0.0250 (6)
C200.2575 (4)0.4255 (3)0.27503 (15)0.0266 (6)
C210.4511 (4)0.2795 (3)0.36328 (16)0.0327 (7)
H21A0.34870.22400.37910.039*
H21B0.42920.36990.40540.039*
O100.9517 (3)0.7347 (2)0.43717 (12)0.0471 (6)
H10A1.07290.79790.43500.071*
H10B0.93190.63490.40700.071*
O200.1635 (3)0.3445 (3)0.42365 (13)0.0642 (7)
H20B0.10480.30710.46590.096*
H20A0.06280.37210.38720.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (12)0.0303 (12)0.0277 (12)0.0033 (10)0.0063 (10)0.0044 (10)
N20.0267 (13)0.0250 (12)0.0348 (14)0.0003 (10)0.0046 (11)0.0106 (10)
O10.0443 (13)0.0374 (12)0.0578 (14)0.0064 (10)0.0235 (11)0.0051 (10)
O20.0280 (11)0.0442 (12)0.0284 (10)0.0022 (9)0.0019 (9)0.0099 (9)
O30.0369 (12)0.0498 (13)0.0275 (11)0.0016 (10)0.0049 (9)0.0094 (9)
O40.0216 (11)0.0570 (13)0.0477 (13)0.0046 (10)0.0038 (9)0.0221 (10)
O50.0340 (11)0.0422 (12)0.0401 (11)0.0048 (9)0.0168 (9)0.0148 (9)
C10.0214 (14)0.0312 (15)0.0306 (15)0.0028 (12)0.0119 (12)0.0014 (12)
C20.0203 (15)0.0408 (17)0.0372 (16)0.0033 (13)0.0063 (12)0.0003 (13)
C30.0215 (15)0.0390 (17)0.054 (2)0.0017 (13)0.0140 (14)0.0045 (15)
C40.0347 (17)0.0322 (16)0.053 (2)0.0054 (14)0.0255 (15)0.0068 (14)
C50.0342 (17)0.0317 (16)0.0372 (17)0.0073 (13)0.0163 (14)0.0070 (13)
C60.0252 (14)0.0232 (14)0.0272 (14)0.0053 (11)0.0081 (12)0.0006 (11)
C70.0238 (14)0.0268 (14)0.0245 (14)0.0064 (12)0.0065 (11)0.0030 (11)
C80.0326 (16)0.0335 (16)0.0275 (15)0.0082 (13)0.0086 (12)0.0054 (12)
C90.0275 (16)0.0291 (15)0.0486 (18)0.0047 (13)0.0075 (13)0.0042 (13)
C100.0209 (14)0.0281 (14)0.0245 (14)0.0061 (12)0.0054 (11)0.0003 (11)
C110.0268 (15)0.0379 (16)0.0270 (15)0.0074 (13)0.0009 (12)0.0085 (13)
C120.0405 (18)0.0474 (19)0.0272 (15)0.0073 (15)0.0049 (14)0.0047 (13)
C130.0238 (15)0.0321 (15)0.0242 (14)0.0016 (12)0.0041 (12)0.0066 (11)
C140.0284 (15)0.0276 (14)0.0267 (14)0.0038 (12)0.0090 (12)0.0035 (11)
C150.0225 (14)0.0223 (13)0.0293 (14)0.0054 (11)0.0073 (12)0.0043 (11)
C160.0265 (15)0.0230 (13)0.0256 (14)0.0028 (11)0.0085 (12)0.0074 (11)
C170.0214 (14)0.0227 (13)0.0284 (14)0.0023 (11)0.0031 (11)0.0041 (11)
C180.0223 (14)0.0221 (13)0.0320 (15)0.0027 (11)0.0090 (12)0.0065 (11)
C190.0271 (15)0.0211 (13)0.0286 (14)0.0056 (11)0.0091 (12)0.0063 (11)
C200.0273 (15)0.0247 (14)0.0269 (15)0.0056 (12)0.0037 (12)0.0036 (11)
C210.0298 (16)0.0367 (16)0.0316 (15)0.0037 (13)0.0090 (13)0.0085 (13)
O100.0411 (12)0.0499 (13)0.0513 (13)0.0091 (10)0.0144 (10)0.0054 (10)
O200.0526 (15)0.104 (2)0.0522 (14)0.0420 (14)0.0186 (12)0.0250 (14)
Geometric parameters (Å, º) top
N1—C101.331 (3)C9—H9A0.9797
N1—C11.429 (3)C9—H9B0.9799
N1—C111.471 (3)C9—H9C0.9803
N2—O41.232 (3)C10—C131.416 (3)
N2—O31.236 (3)C11—C121.520 (4)
N2—C171.439 (3)C11—H11A0.9895
O1—C121.414 (3)C11—H11B0.9895
O1—H10.8400C12—H12A0.9904
O2—C201.273 (3)C12—H12B0.9898
O5—C211.429 (3)C13—C141.357 (3)
O5—H50.8405C13—H130.9492
C1—C61.376 (3)C14—C151.440 (3)
C1—C21.380 (3)C14—H140.9503
C2—C31.385 (4)C15—C161.393 (3)
C2—H2A0.9507C15—C201.446 (3)
C3—C41.382 (4)C16—C171.373 (3)
C3—H30.9503C16—H160.9504
C4—C51.387 (4)C17—C181.408 (3)
C4—H40.9500C18—C191.361 (3)
C5—C61.382 (3)C18—H180.9499
C5—H5A0.9502C19—C201.442 (3)
C6—C71.506 (3)C19—C211.509 (3)
C7—C101.527 (3)C21—H21A0.9901
C7—C81.538 (3)C21—H21B0.9898
C7—C91.539 (3)O10—H10A0.9594
C8—H8A0.9795O10—H10B0.9515
C8—H8B0.9805O20—H20B0.9502
C8—H8C0.9795O20—H20A0.9513
C10—N1—C1111.6 (2)C13—C10—C7128.7 (2)
C10—N1—C11127.0 (2)N1—C11—C12111.2 (2)
C1—N1—C11121.1 (2)N1—C11—H11A109.4
O4—N2—O3122.4 (2)C12—C11—H11A109.4
O4—N2—C17118.9 (2)N1—C11—H11B109.4
O3—N2—C17118.8 (2)C12—C11—H11B109.4
C12—O1—H1109.4H11A—C11—H11B108.0
C21—O5—H5109.4O1—C12—C11111.7 (2)
C6—C1—C2123.8 (2)O1—C12—H12A109.2
C6—C1—N1108.1 (2)C11—C12—H12A109.3
C2—C1—N1128.0 (2)O1—C12—H12B109.3
C1—C2—C3116.1 (3)C11—C12—H12B109.3
C1—C2—H2A121.9H12A—C12—H12B108.0
C3—C2—H2A122.0C14—C13—C10125.0 (2)
C4—C3—C2121.5 (3)C14—C13—H13117.5
C4—C3—H3119.2C10—C13—H13117.5
C2—C3—H3119.2C13—C14—C15127.7 (2)
C3—C4—C5120.7 (3)C13—C14—H14116.1
C3—C4—H4119.6C15—C14—H14116.2
C5—C4—H4119.7C16—C15—C14117.3 (2)
C6—C5—C4118.8 (3)C16—C15—C20119.2 (2)
C6—C5—H5A120.6C14—C15—C20123.5 (2)
C4—C5—H5A120.6C17—C16—C15120.9 (2)
C1—C6—C5119.0 (2)C17—C16—H16119.5
C1—C6—C7109.7 (2)C15—C16—H16119.6
C5—C6—C7131.3 (2)C16—C17—C18121.4 (2)
C6—C7—C10101.47 (19)C16—C17—N2119.5 (2)
C6—C7—C8110.0 (2)C18—C17—N2119.1 (2)
C10—C7—C8112.7 (2)C19—C18—C17119.7 (2)
C6—C7—C9110.5 (2)C19—C18—H18120.2
C10—C7—C9111.1 (2)C17—C18—H18120.2
C8—C7—C9110.8 (2)C18—C19—C20121.1 (2)
C7—C8—H8A109.4C18—C19—C21122.3 (2)
C7—C8—H8B109.5C20—C19—C21116.6 (2)
H8A—C8—H8B109.5O2—C20—C19119.4 (2)
C7—C8—H8C109.5O2—C20—C15122.9 (2)
H8A—C8—H8C109.5C19—C20—C15117.7 (2)
H8B—C8—H8C109.5O5—C21—C19112.6 (2)
C7—C9—H9A109.5O5—C21—H21A109.0
C7—C9—H9B109.5C19—C21—H21A109.1
H9A—C9—H9B109.4O5—C21—H21B109.1
C7—C9—H9C109.5C19—C21—H21B109.1
H9A—C9—H9C109.4H21A—C21—H21B107.8
H9B—C9—H9C109.5H10A—O10—H10B110.1
N1—C10—C13122.2 (2)H20B—O20—H20A102.9
N1—C10—C7109.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20B···O10i0.961.802.739 (4)166
O10—H10B···O2ii0.951.812.750 (3)172
O20—H20A···O20.951.782.714 (3)167
O10—H10A···O1ii0.951.872.811 (3)165
O5—H5···O20iii0.841.802.633 (3)175
O1—H1···O5iv0.841.902.734 (3)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H22N2O5·2H2O
Mr418.44
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)7.377 (2), 8.868 (2), 16.817 (5)
α, β, γ (°)94.603 (5), 101.639 (6), 102.140 (7)
V3)1044.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7525, 3651, 2472
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 1.02
No. of reflections3651
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008), XSHELL (Bruker, 2000) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20B···O10i0.961.802.739 (4)166
O10—H10B···O2ii0.951.812.750 (3)172
O20—H20A···O20.951.782.714 (3)167
O10—H10A···O1ii0.951.872.811 (3)165
O5—H5···O20iii0.841.802.633 (3)175
O1—H1···O5iv0.841.902.734 (3)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE—AC04–94 A L85000.

References

First citationAldoshin, S. M. & Atovmyan, L. O. (1985). Bull. Acad. Sci. USSR Div. Chem. Sci. 34, 180–182.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHobley, J., Malatesta, V., Millini, R., Montanari, L. & Parker Junior, W. O. N. (1999). Phys. Chem. Chem. Phys. 1, 3259–3267.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaymo, F. M. & Giordani, S. (2001). J. Am. Chem. Soc. 123, 4651–4652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaymo, F. M., Giordani, S., White, A. J. P. & Williams, D. J. (2003). J. Org. Chem. 68, 4158–4169.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, W., Chen, P., Gao, Y. & Meng, J. (2003). Acta Cryst. E59, o337–o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1906-o1907
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds