metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(chloro­di­phenyl­phosphine-κP)(di­phenyl­piperidinophosphine-κP)(η5-penta­methyl­cyclo­penta­dien­yl)ruthenium(II)

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 12 July 2009; accepted 14 July 2009; online 18 July 2009)

The title compound, [Ru(C10H15)Cl(C12H10ClP)(C17H20NP)], is a half-sandwich complex of RuII with the chloro­diphenyl­phosphine ligand formed from the diphenyl­piperidinophosphine and chlorine of the precursor complex [Ru(η5-C5Me5)(κ1P—Ph2PNC5H10)Cl2] by an unexpected reaction with NaBH4. The complex has a three-legged piano-stool geometry, with Ru—P bond lengths of 2.2598 (5) Å for the chloro­phosphine and 2.3303 (5) Å for the amino­phosphine.

Related literature

For general background to the reaction of half-sandwich ruthenium amino­phosphine complexes with diynes, see: Pavlik et al. (2006[Pavlik, S., Jantscher, F., Dazinger, G., Mereiter, K. & Kirchner, K. (2006). Eur. J. Inorg. Chem. pp. 1006-1021.]). For the unexpected formation and the crystal structure of a related Ru chloro­diphenyl­phosphine complex, see: Torres-Lubia et al. (1999[Torres-Lubia, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem. 585, 68-82.]). For the unexpected formation of another Mn chloro­diphenyl­phosphine complex, see: Liu et al. (1995[Liu, S.-T., Huo, D.-R., Lin, T.-C., Cheng, M.-C. & Peng, S.-M. (1995). Organometallics, 14, 1529-1532.]). For the preparation of [Ru(Cp*)Cl2]2, see: Oshima et al. (1984[Oshima, N., Suzuki, H. & Moro-oka, Y. (1984). Chem. Lett. 13, 1161-1164.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C10H15)Cl(C12H10ClP)(C17H20NP)]

  • Mr = 761.67

  • Monoclinic, P 21 /c

  • a = 17.5427 (12) Å

  • b = 9.1014 (6) Å

  • c = 22.3459 (15) Å

  • β = 98.881 (1)°

  • V = 3525.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.58 × 0.45 × 0.39 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.61, Tmax = 0.76

  • 26236 measured reflections

  • 10162 independent reflections

  • 8628 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 10162 reflections

  • 411 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Ru—C1 2.251 (2)
Ru—C2 2.274 (2)
Ru—C3 2.209 (2)
Ru—C4 2.240 (2)
Ru—C5 2.250 (2)
Ru—Cl1 2.4587 (5)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We found that halfsandwich ruthenium aminophosphine complexes [Ru(Cp')(κ1P—Ph2PNRR')2(CH3CN)2]+ (Cp' is either Cp = cyclopentadienyl or Cp* = pentamethylcyclopentadienyl; Ph = phenyl; NRR' = NHnPr, NEt2, or NC5H10 = piperidin-1-yl) react with diynes to afford novel η3-phosphaallyl-η2-vinylamine complexes and may transform under certain conditions to aminocarbenes (Pavlik et al., 2006). In continuation of this work we were interested to react [Ru(Cp*)(κ1P—Ph2PNC5H10)Cl2], a Ru(III) complex, with NaBH4 in order to obtain a hydrido or borohydride complex. After workup of the reaction, NMR spectra indicated that another unknown Ru complex must have formed which was studied subsequently with X-ray diffraction and is reported here. The title compound, (I), turned out to contain, in addition to an intact piperidinodiphenylphosphine (Ph2PNC5H10), a chlorodiphenylphosphine as the second phosphine ligand of a half-sandwich complex with a three-legged piano-stool structure (Fig. 1). It is a RuII complex with the chemical formula [Ru(Cp*)(κ1P—Ph2PCl)(κ1P—Ph2PNC5H10)Cl] that bears similarities to [Ru(Cp*)(κ1P—Ph2PCl)2Cl] (Torres-Lubia et al., 1999) with respect to stereochemistry of the complex, but also with respect to its formation. In case of [Ru(Cp*)(κ1P—Ph2PCl)2Cl] the chlorophosphine was not directly introduced but formed from [Ru(Cp*)(κ1P—Ph2PH)2Cl] (Ph2PH = hydridodiphenylphosphine) in CDCl3 as the solvent in the presence of the strong base DBN (1,5-diazabicyclo[4.3.0]non-5-ene) by a stepwise chlorine/hydride exchange between the solvent and the two hydridophosphines. In a related way the title compound must have formed from [Ru(Cp*)(κ1P—Ph2PNC5H10)Cl2] and NaBH4. However, there were no chlorinated solvents present in our reaction and the chlorine of the generated chlorophosphine must originate from the starting complex. It can be speculated that the formation of the title compound involves the intermediary formation of a hydridodiphenylphosphine, which by a hydride/chloride substitution leads to the chlorodiphenylphosphine of the title compound obtained in a poor yield of only 9%. A related and also unexpected transformation of a thiol-substituted hydridodiphenylphosphine into a thiol-substituted chlorodiphenylphosphine was observed in the reaction with Mn(CO)5Br in chloroform (Liu et al., 1995). Bond lengths and angles in the title compound (see Table 1 and supplementary materials) are similar to those of [Ru(Cp*)(κ1P—Ph2PCl)2Cl] (Torres-Lubia et al., 1999), which has <Ru—C> = 2.246 (20) Å (2.245 (21) Å for (I)), Ru—P = 2.242 (2) and 2.257 (2) Å, Ru—Cl = 2.438 (2) Å, and P—Cl = 2.085 (3) Å. Both Ru complexes adopt related conformations and have in common that the Ru-bonded and the P-bonded Cl lie on opposite sides. In both complexes the phosphine ligands adopt orientations that lead to a stabilization by intramolecular π-π-stacking between the two adjacent phenyl rings (Fig. 1) with a shortest contact distance of C(12)···C(28) = 3.183 (3) Å in the title compound (ring-ring centroid distance 3.717 (2) Å, ring-ring inclination angle 12.96°). Moreover, it is remarkable that the title compound shows eight intramolecular C—H···Cl/N interactions (seven to Cl, one to N), but only one intermolecular C—H···Cl interaction (see supplementary materials).

Related literature top

For general background to the reaction of half-sandwich ruthenium aminophosphine complexes with diynes, see: Pavlik et al. (2006). For the unexpected formation and the crystal structure of a related Ru chlorodiphenylphosphine complex, see: Torres-Lubia et al. (1999). For the unexpected formation of another Mn chlorodiphenylphosphine complex, see: Liu et al. (1995). For the preparation of Ru(Cp*)Cl2]2, see: Oshima et al. (1984).

Experimental top

The synthesis of [Ru(Cp*)(κ1P-PPh2NC5H10)(κ1P-PPh2Cl)Cl], (I), was carried out as follows: A solution of [Ru(Cp*)Cl2]2 (322 mg, 0.52 mmol) (Oshima et al., 1984) in THF (10 ml) in THF (10 ml) was treated with Ph2PNC5H10 (300 mg, 1.2 mmol) and the solution was stirred for 1 h at room temperature. After that NaBH4 (150 mg, 4.0 mmol) was added and the mixture was stirred for 12 h. After evaporation of the solvent an oily residue was obtained from which the product was extracted with pentane (2 x 10 ml). The volume of the solution was then reduced to about 0.5 ml whereupon red crystals of the title compound were obtained. Yield: 42 mg (9%). 1H NMR (C6D6, 293 K, δ, p.p.m.): 7.50 - 6.51 [m, 20H, Ph], 3.03 – 2.72 [m, 4H, CH2], 1.40 [s, 15H, Cp*], 1.33 – 1.26 [m, 4H, CH2], 1.00 – 0.89 [m, 2H, CH2]. 13C{1H} NMR (C6D6, 293 K, δ, p.p.m.): 137.1 – 125.7 [Ph], 93.2 [Cp*], 45.86 [CH2], 26.2 [CH2], 24.6 [CH2], 8.9 [Cp*]. 31P{1H} NMR (acetone-d6, 293 K, δ, p.p.m.): 93.1 [d, JHP = 37.2 Hz, PPh2Cl], 36.0 [d, JHP = 38.5 Hz, PPh2N]. Crystals for X-ray diffraction were obtained by cooling a pentane solution to -20°C.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and were thereafter treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for others.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme. Displacement ellipsoids are at the 30% probability level.
Chlorido(chlorodiphenylphosphine-κP)(diphenylpiperidinophosphine- κP)(η5-pentamethylcyclopentadienyl)ruthenium(II) top
Crystal data top
[Ru(C10H15)Cl(C12H10ClP)(C17H20NP)]F(000) = 1576
Mr = 761.67Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8233 reflections
a = 17.5427 (12) Åθ = 2.3–30.0°
b = 9.1014 (6) ŵ = 0.72 mm1
c = 22.3459 (15) ÅT = 173 K
β = 98.881 (1)°Block, orange
V = 3525.0 (4) Å30.58 × 0.45 × 0.39 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
10162 independent reflections
Radiation source: fine-focus sealed tube8628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2420
Tmin = 0.61, Tmax = 0.76k = 1211
26236 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0326P)2 + 2.7631P]
where P = (Fo2 + 2Fc2)/3
10162 reflections(Δ/σ)max = 0.001
411 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Ru(C10H15)Cl(C12H10ClP)(C17H20NP)]V = 3525.0 (4) Å3
Mr = 761.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.5427 (12) ŵ = 0.72 mm1
b = 9.1014 (6) ÅT = 173 K
c = 22.3459 (15) Å0.58 × 0.45 × 0.39 mm
β = 98.881 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8628 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.76Rint = 0.025
26236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 1.10 e Å3
10162 reflectionsΔρmin = 0.97 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.319239 (8)0.284822 (17)0.404551 (6)0.02488 (4)
Cl10.35958 (3)0.03019 (6)0.39015 (2)0.03404 (10)
Cl20.22523 (4)0.50673 (8)0.27604 (3)0.05243 (16)
P10.19442 (3)0.22618 (5)0.41995 (2)0.02501 (9)
P20.29029 (3)0.31711 (6)0.30332 (2)0.03087 (11)
N10.18748 (9)0.12798 (18)0.48395 (7)0.0268 (3)
C10.40816 (12)0.2978 (2)0.48857 (9)0.0345 (4)
C20.34730 (11)0.3924 (2)0.49720 (9)0.0323 (4)
C30.33811 (12)0.5006 (2)0.44971 (10)0.0355 (4)
C40.39950 (13)0.4777 (3)0.41486 (10)0.0388 (5)
C50.44181 (11)0.3528 (3)0.43769 (10)0.0372 (4)
C60.43962 (14)0.1718 (3)0.52760 (11)0.0486 (6)
H6A0.49530.18480.53990.073*
H6B0.43000.07990.50480.073*
H6C0.41430.16810.56370.073*
C70.30928 (13)0.3945 (3)0.55296 (10)0.0412 (5)
H7A0.34820.41330.58860.062*
H7B0.28470.29930.55750.062*
H7C0.27010.47220.54920.062*
C80.28894 (15)0.6353 (3)0.44579 (13)0.0481 (6)
H8A0.32040.71950.46200.072*
H8B0.24690.62080.46950.072*
H8C0.26720.65390.40340.072*
C90.42049 (18)0.5852 (3)0.36886 (12)0.0565 (7)
H9A0.44660.67020.38980.085*
H9B0.37350.61790.34270.085*
H9C0.45500.53750.34420.085*
C100.51677 (13)0.2956 (4)0.42237 (13)0.0552 (7)
H10A0.55870.31980.45520.083*
H10B0.52700.34100.38460.083*
H10C0.51350.18870.41730.083*
C110.12841 (11)0.1238 (2)0.36245 (8)0.0307 (4)
C120.15773 (12)0.0043 (2)0.34017 (9)0.0346 (4)
H120.21050.02930.35200.041*
C130.10999 (14)0.0957 (3)0.30068 (10)0.0430 (5)
H130.13050.18230.28550.052*
C140.03307 (15)0.0612 (3)0.28344 (11)0.0491 (6)
H140.00090.12330.25620.059*
C150.00306 (14)0.0643 (3)0.30598 (11)0.0486 (6)
H150.05000.08780.29450.058*
C160.05041 (12)0.1562 (3)0.34542 (10)0.0400 (5)
H160.02930.24180.36090.048*
C170.13699 (10)0.3886 (2)0.43291 (9)0.0309 (4)
C180.12363 (11)0.4305 (2)0.49036 (11)0.0365 (4)
H180.14080.36960.52430.044*
C190.08509 (13)0.5620 (3)0.49828 (13)0.0479 (6)
H190.07640.59000.53760.057*
C200.05979 (14)0.6505 (3)0.44984 (16)0.0576 (7)
H200.03430.74030.45560.069*
C210.07135 (14)0.6091 (3)0.39243 (15)0.0560 (7)
H210.05300.66970.35870.067*
C220.10972 (13)0.4791 (3)0.38403 (12)0.0437 (5)
H220.11750.45160.34440.052*
C230.24435 (13)0.0107 (2)0.50082 (9)0.0353 (4)
H23A0.29570.04340.49290.042*
H23B0.22950.07760.47590.042*
C240.24849 (14)0.0274 (3)0.56766 (10)0.0423 (5)
H24A0.26780.05880.59250.051*
H24B0.28540.10900.57800.051*
C250.16975 (15)0.0720 (3)0.58253 (10)0.0454 (5)
H25A0.15400.16710.56290.055*
H25B0.17290.08450.62690.055*
C260.11003 (13)0.0447 (3)0.56040 (10)0.0424 (5)
H26A0.12140.13520.58470.051*
H26B0.05820.00950.56610.051*
C270.11023 (11)0.0792 (2)0.49367 (9)0.0342 (4)
H27A0.09520.00950.46900.041*
H27B0.07210.15740.48050.041*
C280.24045 (12)0.1834 (3)0.24860 (9)0.0390 (5)
C290.28044 (15)0.0544 (3)0.24101 (11)0.0486 (6)
H290.32990.03910.26420.058*
C300.24893 (19)0.0529 (4)0.19986 (13)0.0633 (8)
H300.27670.14100.19560.076*
C310.1786 (2)0.0315 (4)0.16586 (13)0.0688 (9)
H310.15740.10420.13760.083*
C320.13863 (18)0.0936 (4)0.17229 (12)0.0656 (9)
H320.08950.10750.14840.079*
C330.16873 (15)0.2039 (3)0.21393 (11)0.0517 (6)
H330.14010.29090.21810.062*
C340.37129 (12)0.3511 (2)0.26195 (9)0.0340 (4)
C350.43729 (13)0.2691 (3)0.27841 (10)0.0406 (5)
H350.44030.20180.31120.049*
C360.49969 (15)0.2849 (3)0.24692 (12)0.0476 (5)
H360.54510.22830.25840.057*
C370.49574 (15)0.3824 (3)0.19928 (11)0.0476 (6)
H370.53860.39460.17850.057*
C380.42924 (15)0.4617 (3)0.18205 (10)0.0473 (6)
H380.42620.52740.14870.057*
C390.36657 (14)0.4471 (3)0.21260 (9)0.0414 (5)
H390.32080.50200.20010.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.02481 (7)0.02548 (8)0.02439 (7)0.00146 (5)0.00396 (5)0.00187 (5)
Cl10.0356 (2)0.0312 (2)0.0362 (2)0.00403 (18)0.00831 (18)0.00388 (18)
Cl20.0585 (3)0.0544 (4)0.0469 (3)0.0194 (3)0.0158 (3)0.0190 (3)
P10.0252 (2)0.0242 (2)0.0253 (2)0.00082 (16)0.00303 (16)0.00145 (17)
P20.0303 (2)0.0367 (3)0.0258 (2)0.00082 (19)0.00501 (17)0.00290 (19)
N10.0287 (7)0.0258 (8)0.0260 (7)0.0005 (6)0.0047 (6)0.0015 (6)
C10.0316 (9)0.0404 (11)0.0295 (9)0.0002 (8)0.0017 (7)0.0072 (8)
C20.0314 (9)0.0342 (10)0.0304 (9)0.0053 (7)0.0022 (7)0.0088 (8)
C30.0364 (10)0.0293 (10)0.0402 (10)0.0059 (8)0.0045 (8)0.0070 (8)
C40.0398 (11)0.0393 (12)0.0377 (10)0.0159 (9)0.0072 (8)0.0078 (9)
C50.0280 (9)0.0460 (12)0.0374 (10)0.0074 (8)0.0039 (7)0.0114 (9)
C60.0464 (13)0.0562 (15)0.0382 (11)0.0100 (11)0.0093 (9)0.0013 (11)
C70.0425 (11)0.0486 (13)0.0334 (10)0.0063 (10)0.0088 (8)0.0122 (9)
C80.0512 (13)0.0282 (11)0.0642 (15)0.0027 (9)0.0063 (11)0.0068 (10)
C90.0725 (18)0.0477 (15)0.0513 (14)0.0288 (13)0.0160 (13)0.0018 (12)
C100.0295 (10)0.082 (2)0.0551 (14)0.0038 (11)0.0088 (10)0.0193 (14)
C110.0322 (9)0.0349 (10)0.0242 (8)0.0063 (7)0.0022 (7)0.0045 (7)
C120.0393 (10)0.0334 (10)0.0304 (9)0.0065 (8)0.0035 (7)0.0017 (8)
C130.0545 (13)0.0390 (12)0.0350 (10)0.0149 (10)0.0053 (9)0.0035 (9)
C140.0535 (14)0.0559 (16)0.0351 (11)0.0231 (12)0.0019 (10)0.0003 (10)
C150.0356 (11)0.0644 (17)0.0415 (12)0.0130 (11)0.0074 (9)0.0077 (11)
C160.0335 (10)0.0469 (13)0.0380 (10)0.0047 (9)0.0001 (8)0.0036 (9)
C170.0249 (8)0.0253 (9)0.0429 (10)0.0012 (7)0.0065 (7)0.0039 (8)
C180.0305 (9)0.0307 (10)0.0481 (11)0.0006 (8)0.0052 (8)0.0040 (9)
C190.0386 (11)0.0355 (12)0.0700 (16)0.0014 (9)0.0102 (11)0.0131 (11)
C200.0391 (12)0.0288 (12)0.106 (2)0.0066 (9)0.0150 (13)0.0010 (13)
C210.0372 (12)0.0409 (13)0.091 (2)0.0074 (10)0.0150 (12)0.0307 (14)
C220.0352 (10)0.0412 (12)0.0561 (13)0.0039 (9)0.0113 (9)0.0173 (10)
C230.0408 (10)0.0319 (10)0.0337 (9)0.0073 (8)0.0079 (8)0.0052 (8)
C240.0481 (12)0.0440 (13)0.0336 (10)0.0051 (10)0.0023 (9)0.0113 (9)
C250.0590 (14)0.0430 (13)0.0344 (10)0.0071 (11)0.0076 (10)0.0104 (9)
C260.0444 (12)0.0479 (13)0.0372 (11)0.0064 (10)0.0134 (9)0.0075 (10)
C270.0329 (9)0.0354 (11)0.0346 (9)0.0050 (8)0.0067 (7)0.0047 (8)
C280.0355 (10)0.0565 (14)0.0246 (9)0.0111 (9)0.0031 (7)0.0030 (9)
C290.0499 (13)0.0570 (16)0.0392 (11)0.0112 (11)0.0078 (10)0.0129 (11)
C300.0765 (19)0.068 (2)0.0471 (14)0.0179 (16)0.0154 (13)0.0225 (14)
C310.083 (2)0.080 (2)0.0416 (14)0.0289 (19)0.0032 (14)0.0154 (15)
C320.0586 (16)0.094 (3)0.0387 (13)0.0312 (17)0.0110 (11)0.0103 (14)
C330.0443 (13)0.0681 (18)0.0399 (12)0.0131 (12)0.0024 (10)0.0119 (12)
C340.0383 (10)0.0373 (11)0.0275 (9)0.0066 (8)0.0083 (7)0.0019 (8)
C350.0414 (11)0.0438 (12)0.0393 (11)0.0010 (9)0.0148 (9)0.0013 (9)
C360.0448 (12)0.0498 (14)0.0529 (13)0.0012 (10)0.0223 (10)0.0002 (11)
C370.0573 (14)0.0478 (14)0.0438 (12)0.0160 (11)0.0269 (11)0.0087 (10)
C380.0600 (15)0.0535 (15)0.0311 (10)0.0140 (12)0.0157 (10)0.0004 (10)
C390.0492 (12)0.0479 (13)0.0270 (9)0.0081 (10)0.0054 (8)0.0027 (9)
Geometric parameters (Å, º) top
Ru—C12.251 (2)C15—H150.9500
Ru—C22.274 (2)C16—H160.9500
Ru—C32.209 (2)C17—C221.393 (3)
Ru—C42.240 (2)C17—C181.393 (3)
Ru—C52.250 (2)C18—C191.399 (3)
Ru—P12.3303 (5)C18—H180.9500
Ru—P22.2598 (5)C19—C201.367 (4)
Ru—Cl12.4587 (5)C19—H190.9500
P1—N11.7067 (16)C20—C211.382 (4)
P1—C111.844 (2)C20—H200.9500
P1—C171.837 (2)C21—C221.388 (4)
P2—Cl22.1066 (8)C21—H210.9500
P2—C281.846 (2)C22—H220.9500
P2—C341.837 (2)C23—C241.524 (3)
N1—C231.470 (2)C23—H23A0.9900
N1—C271.474 (2)C23—H23B0.9900
C1—C21.408 (3)C24—C251.525 (3)
C1—C51.449 (3)C24—H24A0.9900
C1—C61.494 (3)C24—H24B0.9900
C2—C31.438 (3)C25—C261.520 (4)
C2—C71.501 (3)C25—H25A0.9900
C3—C41.438 (3)C25—H25B0.9900
C3—C81.494 (3)C26—C271.524 (3)
C4—C51.409 (3)C26—H26A0.9900
C4—C91.506 (3)C26—H26B0.9900
C5—C101.502 (3)C27—H27A0.9900
C6—H6A0.9800C27—H27B0.9900
C6—H6B0.9800C28—C331.385 (3)
C6—H6C0.9800C28—C291.392 (4)
C7—H7A0.9800C29—C301.396 (4)
C7—H7B0.9800C29—H290.9500
C7—H7C0.9800C30—C311.359 (5)
C8—H8A0.9800C30—H300.9500
C8—H8B0.9800C31—C321.357 (5)
C8—H8C0.9800C31—H310.9500
C9—H9A0.9800C32—C331.414 (4)
C9—H9B0.9800C32—H320.9500
C9—H9C0.9800C33—H330.9500
C10—H10A0.9800C34—C351.379 (3)
C10—H10B0.9800C34—C391.400 (3)
C10—H10C0.9800C35—C361.397 (3)
C11—C161.394 (3)C35—H350.9500
C11—C121.397 (3)C36—C371.379 (4)
C12—C131.394 (3)C36—H360.9500
C12—H120.9500C37—C381.375 (4)
C13—C141.381 (4)C37—H370.9500
C13—H130.9500C38—C391.387 (3)
C14—C151.385 (4)C38—H380.9500
C14—H140.9500C39—H390.9500
C15—C161.393 (3)
P1—Ru—P296.11 (2)C16—C11—P1124.58 (17)
P1—Ru—Cl195.71 (2)C12—C11—P1116.36 (15)
P2—Ru—Cl190.94 (2)C13—C12—C11120.3 (2)
N1—P1—C11101.58 (8)C13—C12—H12119.8
N1—P1—C17100.22 (8)C11—C12—H12119.8
C11—P1—C17102.46 (9)C14—C13—C12120.4 (2)
Cl2—P2—C2899.68 (8)C14—C13—H13119.8
Cl2—P2—C3498.23 (8)C12—C13—H13119.8
C28—P2—C3495.83 (9)C13—C14—C15119.7 (2)
C3—Ru—C437.71 (8)C13—C14—H14120.1
C3—Ru—C562.42 (8)C15—C14—H14120.1
C4—Ru—C536.58 (9)C14—C15—C16120.1 (2)
C3—Ru—C162.41 (8)C14—C15—H15119.9
C4—Ru—C161.93 (8)C16—C15—H15119.9
C5—Ru—C137.56 (8)C15—C16—C11120.7 (2)
C3—Ru—P2109.66 (6)C15—C16—H16119.7
C4—Ru—P292.38 (6)C11—C16—H16119.7
C5—Ru—P2110.44 (6)C22—C17—C18118.3 (2)
C1—Ru—P2147.97 (6)C22—C17—P1118.87 (17)
C3—Ru—C237.39 (8)C18—C17—P1122.69 (16)
C4—Ru—C261.63 (8)C17—C18—C19120.3 (2)
C5—Ru—C261.35 (7)C17—C18—H18119.9
C1—Ru—C236.24 (7)C19—C18—H18119.9
P2—Ru—C2147.03 (6)C20—C19—C18120.5 (3)
C3—Ru—P1102.36 (6)C20—C19—H19119.7
C4—Ru—P1138.97 (6)C18—C19—H19119.7
C5—Ru—P1152.42 (5)C19—C20—C21119.9 (2)
C1—Ru—P1115.77 (6)C19—C20—H20120.1
C2—Ru—P192.32 (5)C21—C20—H20120.1
C3—Ru—Cl1150.65 (6)C20—C21—C22120.1 (2)
C4—Ru—Cl1124.27 (6)C20—C21—H21119.9
C5—Ru—Cl191.30 (6)C22—C21—H21119.9
C1—Ru—Cl188.98 (6)C21—C22—C17120.9 (2)
C2—Ru—Cl1119.91 (6)C21—C22—H22119.6
N1—P1—Ru115.71 (6)C17—C22—H22119.6
C17—P1—Ru112.94 (6)N1—C23—C24110.12 (17)
C11—P1—Ru121.08 (6)N1—C23—H23A109.6
C34—P2—Ru116.99 (7)C24—C23—H23A109.6
C28—P2—Ru125.98 (7)N1—C23—H23B109.6
Cl2—P2—Ru115.10 (3)C24—C23—H23B109.6
C2—C1—C5107.78 (19)H23A—C23—H23B108.1
C2—C1—C6127.5 (2)C23—C24—C25111.50 (19)
C5—C1—C6124.4 (2)C23—C24—H24A109.3
C2—C1—Ru72.77 (11)C25—C24—H24A109.3
C5—C1—Ru71.18 (11)C23—C24—H24B109.3
C6—C1—Ru126.36 (16)C25—C24—H24B109.3
C1—C2—C3108.58 (18)H24A—C24—H24B108.0
C1—C2—C7124.4 (2)C26—C25—C24110.18 (19)
C3—C2—C7126.2 (2)C26—C25—H25A109.6
C1—C2—Ru70.99 (11)C24—C25—H25A109.6
C3—C2—Ru68.85 (11)C26—C25—H25B109.6
C7—C2—Ru134.38 (14)C24—C25—H25B109.6
C4—C3—C2107.00 (19)H25A—C25—H25B108.1
C4—C3—C8124.1 (2)C25—C26—C27110.92 (19)
C2—C3—C8127.1 (2)C25—C26—H26A109.5
C4—C3—Ru72.30 (12)C27—C26—H26A109.5
C2—C3—Ru73.76 (11)C25—C26—H26B109.5
C8—C3—Ru131.17 (16)C27—C26—H26B109.5
C5—C4—C3108.50 (19)H26A—C26—H26B108.0
C5—C4—C9126.9 (2)N1—C27—C26110.32 (17)
C3—C4—C9123.9 (2)N1—C27—H27A109.6
C5—C4—Ru72.12 (12)C26—C27—H27A109.6
C3—C4—Ru69.99 (11)N1—C27—H27B109.6
C9—C4—Ru130.94 (16)C26—C27—H27B109.6
C4—C5—C1107.90 (18)H27A—C27—H27B108.1
C4—C5—C10128.9 (2)C33—C28—C29118.5 (2)
C1—C5—C10122.4 (2)C33—C28—P2125.3 (2)
C4—C5—Ru71.31 (11)C29—C28—P2116.14 (17)
C1—C5—Ru71.26 (11)C28—C29—C30121.0 (3)
C10—C5—Ru130.95 (16)C28—C29—H29119.5
C1—C6—H6A109.5C30—C29—H29119.5
C1—C6—H6B109.5C31—C30—C29120.1 (3)
H6A—C6—H6B109.5C31—C30—H30120.0
C1—C6—H6C109.5C29—C30—H30120.0
H6A—C6—H6C109.5C32—C31—C30120.0 (3)
H6B—C6—H6C109.5C32—C31—H31120.0
C2—C7—H7A109.5C30—C31—H31120.0
C2—C7—H7B109.5C31—C32—C33121.2 (3)
H7A—C7—H7B109.5C31—C32—H32119.4
C2—C7—H7C109.5C33—C32—H32119.4
H7A—C7—H7C109.5C28—C33—C32119.2 (3)
H7B—C7—H7C109.5C28—C33—H33120.4
C3—C8—H8A109.5C32—C33—H33120.4
C3—C8—H8B109.5C35—C34—C39119.6 (2)
H8A—C8—H8B109.5C35—C34—P2117.25 (16)
C3—C8—H8C109.5C39—C34—P2123.04 (17)
H8A—C8—H8C109.5C34—C35—C36120.1 (2)
H8B—C8—H8C109.5C34—C35—H35120.0
C4—C9—H9A109.5C36—C35—H35120.0
C4—C9—H9B109.5C37—C36—C35120.3 (2)
H9A—C9—H9B109.5C37—C36—H36119.8
C4—C9—H9C109.5C35—C36—H36119.8
H9A—C9—H9C109.5C38—C37—C36119.5 (2)
H9B—C9—H9C109.5C38—C37—H37120.2
C5—C10—H10A109.5C36—C37—H37120.2
C5—C10—H10B109.5C37—C38—C39121.0 (2)
H10A—C10—H10B109.5C37—C38—H38119.5
C5—C10—H10C109.5C39—C38—H38119.5
H10A—C10—H10C109.5C38—C39—C34119.5 (2)
H10B—C10—H10C109.5C38—C39—H39120.3
C16—C11—C12118.64 (19)C34—C39—H39120.3
C3—Ru—P1—N190.96 (9)C2—C3—C4—C9167.3 (2)
C4—Ru—P1—N1101.90 (11)C8—C3—C4—C91.7 (3)
C5—Ru—P1—N138.14 (16)Ru—C3—C4—C9126.6 (2)
C1—Ru—P1—N125.85 (9)C2—C3—C4—Ru66.14 (13)
P2—Ru—P1—N1157.33 (6)C8—C3—C4—Ru128.2 (2)
C2—Ru—P1—N154.59 (8)C3—Ru—C4—C5118.19 (18)
Cl1—Ru—P1—N165.77 (6)C1—Ru—C4—C537.90 (12)
C3—Ru—P1—C1723.72 (9)P2—Ru—C4—C5122.04 (12)
C4—Ru—P1—C1712.79 (12)C2—Ru—C4—C579.24 (13)
C5—Ru—P1—C1776.55 (16)P1—Ru—C4—C5135.82 (11)
C1—Ru—P1—C1788.84 (10)Cl1—Ru—C4—C529.28 (14)
P2—Ru—P1—C1787.98 (7)C5—Ru—C4—C3118.19 (18)
C2—Ru—P1—C1760.10 (9)C1—Ru—C4—C380.29 (14)
Cl1—Ru—P1—C17179.54 (7)P2—Ru—C4—C3119.77 (12)
C3—Ru—P1—C11145.64 (10)C2—Ru—C4—C338.95 (12)
C4—Ru—P1—C11134.71 (12)P1—Ru—C4—C317.63 (17)
C5—Ru—P1—C11161.54 (16)Cl1—Ru—C4—C3147.47 (11)
C1—Ru—P1—C11149.24 (10)C3—Ru—C4—C9118.1 (3)
P2—Ru—P1—C1133.93 (8)C5—Ru—C4—C9123.8 (3)
C2—Ru—P1—C11177.99 (10)C1—Ru—C4—C9161.7 (3)
Cl1—Ru—P1—C1157.62 (8)P2—Ru—C4—C91.7 (2)
C3—Ru—P2—C3480.02 (10)C2—Ru—C4—C9157.0 (3)
C4—Ru—P2—C3445.70 (10)P1—Ru—C4—C9100.4 (2)
C5—Ru—P2—C3413.08 (11)Cl1—Ru—C4—C994.5 (3)
C1—Ru—P2—C3410.91 (14)C3—C4—C5—C11.4 (2)
C2—Ru—P2—C3481.63 (13)C9—C4—C5—C1169.5 (2)
P1—Ru—P2—C34174.49 (8)Ru—C4—C5—C162.25 (14)
Cl1—Ru—P2—C3478.66 (8)C3—C4—C5—C10171.1 (2)
C3—Ru—P2—C28159.27 (11)C9—C4—C5—C100.2 (4)
C4—Ru—P2—C28166.41 (11)Ru—C4—C5—C10128.0 (2)
C5—Ru—P2—C28133.79 (11)C3—C4—C5—Ru60.84 (14)
C1—Ru—P2—C28131.61 (14)C9—C4—C5—Ru128.2 (2)
C2—Ru—P2—C28157.67 (13)C2—C1—C5—C41.7 (2)
P1—Ru—P2—C2853.79 (10)C6—C1—C5—C4176.0 (2)
Cl1—Ru—P2—C2842.05 (10)Ru—C1—C5—C462.28 (14)
C3—Ru—P2—Cl234.56 (7)C2—C1—C5—C10168.8 (2)
C4—Ru—P2—Cl268.88 (7)C6—C1—C5—C105.5 (3)
C5—Ru—P2—Cl2101.50 (7)Ru—C1—C5—C10127.2 (2)
C1—Ru—P2—Cl2103.67 (11)C2—C1—C5—Ru64.02 (14)
C2—Ru—P2—Cl232.95 (10)C6—C1—C5—Ru121.7 (2)
P1—Ru—P2—Cl270.92 (3)C3—Ru—C5—C437.47 (12)
Cl1—Ru—P2—Cl2166.76 (3)C1—Ru—C5—C4117.22 (18)
C17—P1—N1—C23161.77 (15)P2—Ru—C5—C464.67 (12)
C11—P1—N1—C2393.12 (16)C2—Ru—C5—C480.07 (13)
Ru—P1—N1—C2340.00 (16)P1—Ru—C5—C498.89 (17)
C17—P1—N1—C2762.39 (16)Cl1—Ru—C5—C4156.15 (12)
C11—P1—N1—C2742.73 (16)C3—Ru—C5—C179.75 (13)
Ru—P1—N1—C27175.85 (12)C4—Ru—C5—C1117.22 (18)
C3—Ru—C1—C236.55 (12)P2—Ru—C5—C1178.11 (11)
C4—Ru—C1—C279.42 (14)C2—Ru—C5—C137.14 (12)
C5—Ru—C1—C2116.33 (19)P1—Ru—C5—C118.3 (2)
P2—Ru—C1—C2119.67 (12)Cl1—Ru—C5—C186.63 (12)
P1—Ru—C1—C254.36 (13)C3—Ru—C5—C10163.2 (3)
Cl1—Ru—C1—C2150.20 (12)C4—Ru—C5—C10125.7 (3)
C3—Ru—C1—C579.78 (14)C1—Ru—C5—C10117.1 (3)
C4—Ru—C1—C536.91 (13)P2—Ru—C5—C1061.1 (3)
P2—Ru—C1—C53.34 (19)C2—Ru—C5—C10154.2 (3)
C2—Ru—C1—C5116.33 (19)P1—Ru—C5—C10135.4 (2)
P1—Ru—C1—C5170.69 (11)Cl1—Ru—C5—C1030.4 (2)
Cl1—Ru—C1—C593.46 (12)N1—P1—C11—C1692.25 (18)
C3—Ru—C1—C6160.9 (2)C17—P1—C11—C1611.1 (2)
C4—Ru—C1—C6156.3 (2)Ru—P1—C11—C16137.91 (16)
C5—Ru—C1—C6119.4 (2)N1—P1—C11—C1280.18 (16)
P2—Ru—C1—C6116.03 (19)C17—P1—C11—C12176.48 (15)
C2—Ru—C1—C6124.3 (3)Ru—P1—C11—C1249.67 (17)
P1—Ru—C1—C669.9 (2)C16—C11—C12—C131.4 (3)
Cl1—Ru—C1—C625.90 (19)P1—C11—C12—C13174.28 (16)
C5—C1—C2—C34.2 (2)C11—C12—C13—C140.4 (3)
C6—C1—C2—C3178.2 (2)C12—C13—C14—C150.6 (3)
Ru—C1—C2—C358.77 (14)C13—C14—C15—C160.6 (4)
C5—C1—C2—C7165.66 (19)C14—C15—C16—C110.3 (4)
C6—C1—C2—C78.4 (3)C12—C11—C16—C151.3 (3)
Ru—C1—C2—C7131.4 (2)P1—C11—C16—C15173.59 (17)
C5—C1—C2—Ru62.99 (13)N1—P1—C17—C22162.32 (17)
C6—C1—C2—Ru123.0 (2)C11—P1—C17—C2257.91 (18)
C3—Ru—C2—C1119.64 (18)Ru—P1—C17—C2273.97 (17)
C4—Ru—C2—C180.35 (14)N1—P1—C17—C1821.93 (18)
C5—Ru—C2—C138.50 (13)C11—P1—C17—C18126.33 (17)
P2—Ru—C2—C1122.13 (13)Ru—P1—C17—C18101.79 (16)
P1—Ru—C2—C1132.90 (12)C22—C17—C18—C191.3 (3)
Cl1—Ru—C2—C134.97 (14)P1—C17—C18—C19174.52 (17)
C4—Ru—C2—C339.29 (12)C17—C18—C19—C200.3 (3)
C5—Ru—C2—C381.14 (13)C18—C19—C20—C210.9 (4)
C1—Ru—C2—C3119.64 (18)C19—C20—C21—C221.1 (4)
P2—Ru—C2—C32.49 (17)C20—C21—C22—C170.1 (4)
P1—Ru—C2—C3107.45 (11)C18—C17—C22—C211.1 (3)
Cl1—Ru—C2—C3154.61 (10)P1—C17—C22—C21174.87 (18)
C3—Ru—C2—C7120.4 (3)C27—N1—C23—C2461.0 (2)
C4—Ru—C2—C7159.7 (3)P1—N1—C23—C24160.01 (15)
C5—Ru—C2—C7158.4 (3)N1—C23—C24—C2556.8 (3)
C1—Ru—C2—C7119.9 (3)C23—C24—C25—C2652.6 (3)
P2—Ru—C2—C7117.9 (2)C24—C25—C26—C2752.8 (3)
P1—Ru—C2—C713.0 (2)C23—N1—C27—C2661.7 (2)
Cl1—Ru—C2—C785.0 (2)P1—N1—C27—C26159.53 (15)
C1—C2—C3—C45.0 (2)C25—C26—C27—N157.6 (3)
C7—C2—C3—C4164.60 (19)C34—P2—C28—C33115.1 (2)
Ru—C2—C3—C465.15 (14)Cl2—P2—C28—C3315.7 (2)
C1—C2—C3—C8170.2 (2)Ru—P2—C28—C33115.29 (19)
C7—C2—C3—C80.5 (3)C34—P2—C28—C2962.84 (19)
Ru—C2—C3—C8129.7 (2)Cl2—P2—C28—C29162.24 (16)
C1—C2—C3—Ru60.10 (14)Ru—P2—C28—C2966.80 (19)
C7—C2—C3—Ru130.3 (2)C33—C28—C29—C300.6 (4)
C5—Ru—C3—C436.34 (13)P2—C28—C29—C30178.6 (2)
C1—Ru—C3—C478.93 (14)C28—C29—C30—C310.9 (4)
P2—Ru—C3—C467.07 (13)C29—C30—C31—C320.6 (5)
C2—Ru—C3—C4114.37 (18)C30—C31—C32—C330.1 (5)
P1—Ru—C3—C4168.26 (12)C29—C28—C33—C320.1 (3)
Cl1—Ru—C3—C465.05 (18)P2—C28—C33—C32177.94 (19)
C4—Ru—C3—C2114.37 (18)C31—C32—C33—C280.2 (4)
C5—Ru—C3—C278.03 (13)C28—P2—C34—C3594.28 (19)
C1—Ru—C3—C235.44 (11)Cl2—P2—C34—C35165.03 (17)
P2—Ru—C3—C2178.56 (10)Ru—P2—C34—C3541.3 (2)
P1—Ru—C3—C277.37 (11)C28—P2—C34—C3981.0 (2)
Cl1—Ru—C3—C249.32 (18)Cl2—P2—C34—C3919.66 (19)
C4—Ru—C3—C8120.2 (3)Ru—P2—C34—C39143.34 (16)
C5—Ru—C3—C8156.5 (2)C39—C34—C35—C361.6 (4)
C1—Ru—C3—C8160.9 (2)P2—C34—C35—C36177.13 (19)
P2—Ru—C3—C853.1 (2)C34—C35—C36—C370.0 (4)
C2—Ru—C3—C8125.4 (3)C35—C36—C37—C381.4 (4)
P1—Ru—C3—C848.1 (2)C36—C37—C38—C391.2 (4)
Cl1—Ru—C3—C8174.74 (16)C37—C38—C39—C340.5 (4)
C2—C3—C4—C53.9 (2)C35—C34—C39—C381.9 (3)
C8—C3—C4—C5169.6 (2)P2—C34—C39—C38177.08 (18)
Ru—C3—C4—C562.19 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Cl10.982.713.426 (2)131
C12—H12···Cl10.952.683.559 (2)154
C18—H18···N10.952.562.984 (3)107
C22—H22···Cl20.952.663.391 (2)135
C23—H23A···Cl10.992.713.432 (2)130
C29—H29···Cl10.952.783.414 (3)125
C33—H33···Cl20.952.683.175 (3)113
C37—H37···Cl1i0.952.813.716 (2)159
C39—H39···Cl20.952.563.088 (2)115
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C10H15)Cl(C12H10ClP)(C17H20NP)]
Mr761.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.5427 (12), 9.1014 (6), 22.3459 (15)
β (°) 98.881 (1)
V3)3525.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.58 × 0.45 × 0.39
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.61, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
26236, 10162, 8628
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections10162
No. of parameters411
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.97

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ru—C12.251 (2)Ru—C52.250 (2)
Ru—C22.274 (2)Ru—P12.3303 (5)
Ru—C32.209 (2)Ru—P22.2598 (5)
Ru—C42.240 (2)Ru—Cl12.4587 (5)
 

Acknowledgements

Financial support by the FWF Austrian Science Fund (project No. P16600-N11) is gratefully acknowledged.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, S.-T., Huo, D.-R., Lin, T.-C., Cheng, M.-C. & Peng, S.-M. (1995). Organometallics, 14, 1529–1532.  CSD CrossRef CAS Web of Science Google Scholar
First citationOshima, N., Suzuki, H. & Moro-oka, Y. (1984). Chem. Lett. 13, 1161–1164.  CrossRef Web of Science Google Scholar
First citationPavlik, S., Jantscher, F., Dazinger, G., Mereiter, K. & Kirchner, K. (2006). Eur. J. Inorg. Chem. pp. 1006–1021.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres-Lubia, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem. 585, 68–82.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds