organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-1H-indole-2-carbo­nitrile

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 23 June 2009; accepted 27 June 2009; online 4 July 2009)

The title compound, C11H10N2, crystallizes with two mol­ecules in the asymmetric unit, both of which are essentially planar (r.m.s. deviations = 0.014 and 0.016 Å). In the crystal, aromatic ππ stacking inter­actions occur [shortest centroid–centroid separation = 3.5569 (11) Å].

Related literature

For the synthesis, see: Snyder & Eliel (1948[Snyder, H. R. & Eliel, E. L. (1948). J. Am. Chem. Soc. 70, 1703-1705.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2

  • Mr = 170.21

  • Monoclinic, P 21 /c

  • a = 8.8066 (18) Å

  • b = 15.359 (3) Å

  • c = 13.480 (3) Å

  • β = 95.67 (3)°

  • V = 1814.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.990

  • 16175 measured reflections

  • 4303 independent reflections

  • 3462 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.03

  • 4303 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The asymmetric unit of (I) comprises of two molecules (Fig. 1), in which the indole ring is each almost coplanar with a dihedral angle of 1.32 (7)° and 0.75 (7)°, respectively, between its pyrrole ring and fused benzene ring.

In the crystal packing, strong π-π stacking interactions help establishing the molecular packing.

Related literature top

For the synthesis, see: Snyder & Eliel (1948).

Experimental top

The title compound was prepared according to the modified method of Snyder & Eliel (1948), as Scheme 1 shows. 1-Methyl-3-dimethylaminomethylindole was added to an ethanolic-aqueous solution (15%, 100 ml) of sodium cyanide (1.87 g, 0.038 mol), and then the resulting mixture was refluxed for 2 h, with the process monitored by TLC. After the reaction ceased, the reaction mixture was extracted with CH2Cl2 (3 × 50 ml), dried over anhydrous Na2SO4, and separated by flash chromatograhpy (ethyl acetate-petroleum 10/90 v/v) to provide the major product 1-methylindole-3-acetonitrile (yield 3.68 g,57%, m.p.328–330 K) and its isomeric substance 1,3-dimethyl-1H-indole-2-carbonitrile (yield 0.97 g,15%, m.p.339–340 K). Colourless blocks of (I) were grown from a mixture of ethyl actate and petroleum ether (1:1 v/v).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.98 Å)and refined as riding with Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The two molecular structure of (I) in the asymmetrical unit with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The formation of the title compound.
1,3-Dimethyl-1H-indole-2-carbonitrile top
Crystal data top
C11H10N2F(000) = 720
Mr = 170.21Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5208 reflections
a = 8.8066 (18) Åθ = 2.0–27.9°
b = 15.359 (3) ŵ = 0.08 mm1
c = 13.480 (3) ÅT = 113 K
β = 95.67 (3)°Block, colourless
V = 1814.4 (7) Å30.20 × 0.18 × 0.14 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4303 independent reflections
Radiation source: rotating anode3462 reflections with I > 2σ(I)
Confocla monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and ϕ scansh = 117
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2020
Tmin = 0.985, Tmax = 0.990l = 1717
16175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.2443P]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max = 0.003
238 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H10N2V = 1814.4 (7) Å3
Mr = 170.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.8066 (18) ŵ = 0.08 mm1
b = 15.359 (3) ÅT = 113 K
c = 13.480 (3) Å0.20 × 0.18 × 0.14 mm
β = 95.67 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3462 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.035
16175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
4303 reflectionsΔρmin = 0.28 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82816 (12)0.53565 (7)0.89373 (8)0.0220 (2)
N20.54466 (13)0.37505 (8)0.91305 (9)0.0323 (3)
N30.68373 (12)0.02746 (7)0.89897 (8)0.0234 (3)
N40.88484 (17)0.16898 (9)0.90325 (11)0.0447 (4)
C10.94864 (16)0.30650 (8)0.85689 (11)0.0294 (3)
H1A1.01430.28410.91420.044*
H1B0.99500.29360.79540.044*
H1C0.84820.27860.85440.044*
C20.93090 (14)0.40280 (8)0.86704 (9)0.0210 (3)
C31.04387 (14)0.46744 (8)0.85879 (9)0.0201 (3)
C41.19845 (15)0.46347 (8)0.84089 (9)0.0237 (3)
H41.24620.40920.83080.028*
C51.27868 (15)0.54002 (9)0.83840 (10)0.0286 (3)
H51.38340.53820.82710.034*
C61.20941 (16)0.62085 (9)0.85218 (10)0.0285 (3)
H61.26800.67250.84880.034*
C71.05797 (15)0.62722 (8)0.87060 (9)0.0247 (3)
H71.01140.68200.88000.030*
C80.97653 (14)0.54941 (8)0.87480 (9)0.0200 (3)
C90.80186 (14)0.44673 (8)0.88817 (9)0.0211 (3)
C100.65833 (15)0.40909 (8)0.90293 (10)0.0242 (3)
C110.71576 (15)0.60235 (9)0.91016 (10)0.0278 (3)
H11A0.76640.65140.94630.042*
H11B0.63820.57790.94950.042*
H11C0.66700.62260.84580.042*
C120.43756 (19)0.16808 (9)0.85253 (11)0.0339 (3)
H12A0.41960.18010.78250.051*
H12B0.34260.16990.88180.051*
H12C0.50570.21100.88370.051*
C130.50716 (16)0.07991 (8)0.86744 (9)0.0239 (3)
C140.43132 (15)0.00185 (8)0.86448 (9)0.0223 (3)
C150.27685 (15)0.02613 (9)0.84775 (9)0.0258 (3)
H150.19940.01670.83520.031*
C160.24020 (16)0.11338 (9)0.85001 (10)0.0280 (3)
H160.13630.13070.83920.034*
C170.35452 (16)0.17728 (9)0.86808 (10)0.0277 (3)
H170.32580.23690.86890.033*
C180.50620 (16)0.15567 (8)0.88453 (10)0.0244 (3)
H180.58270.19910.89610.029*
C190.54362 (14)0.06698 (8)0.88352 (9)0.0205 (3)
C200.66012 (16)0.06165 (8)0.88826 (9)0.0241 (3)
C210.78416 (17)0.12122 (9)0.89733 (11)0.0306 (3)
C220.83057 (15)0.07062 (9)0.91704 (11)0.0300 (3)
H22A0.84960.10530.85850.045*
H22B0.91120.02680.92950.045*
H22C0.83010.10880.97530.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (5)0.0209 (5)0.0245 (6)0.0012 (4)0.0027 (4)0.0009 (4)
N20.0231 (6)0.0319 (6)0.0425 (7)0.0034 (5)0.0063 (5)0.0043 (5)
N30.0229 (6)0.0213 (5)0.0262 (6)0.0001 (4)0.0027 (4)0.0008 (4)
N40.0502 (9)0.0360 (7)0.0480 (9)0.0171 (7)0.0053 (7)0.0000 (6)
C10.0278 (7)0.0219 (6)0.0387 (8)0.0004 (5)0.0039 (6)0.0009 (5)
C20.0196 (6)0.0219 (6)0.0211 (6)0.0003 (5)0.0001 (5)0.0009 (5)
C30.0202 (6)0.0211 (6)0.0189 (6)0.0001 (5)0.0007 (5)0.0012 (4)
C40.0210 (6)0.0268 (6)0.0232 (6)0.0013 (5)0.0023 (5)0.0017 (5)
C50.0211 (6)0.0385 (8)0.0264 (7)0.0046 (6)0.0028 (5)0.0034 (6)
C60.0296 (7)0.0278 (7)0.0277 (7)0.0104 (6)0.0010 (6)0.0027 (5)
C70.0283 (7)0.0212 (6)0.0242 (7)0.0019 (5)0.0008 (5)0.0004 (5)
C80.0202 (6)0.0220 (6)0.0174 (6)0.0005 (5)0.0001 (5)0.0007 (4)
C90.0199 (6)0.0222 (6)0.0210 (6)0.0018 (5)0.0011 (5)0.0010 (5)
C100.0226 (6)0.0245 (6)0.0254 (7)0.0011 (5)0.0022 (5)0.0022 (5)
C110.0246 (7)0.0275 (6)0.0321 (7)0.0058 (5)0.0064 (6)0.0014 (5)
C120.0435 (9)0.0250 (7)0.0330 (8)0.0067 (6)0.0024 (6)0.0010 (5)
C130.0305 (7)0.0211 (6)0.0201 (6)0.0028 (5)0.0028 (5)0.0001 (5)
C140.0252 (7)0.0236 (6)0.0182 (6)0.0034 (5)0.0030 (5)0.0010 (5)
C150.0237 (7)0.0317 (7)0.0220 (7)0.0034 (6)0.0015 (5)0.0013 (5)
C160.0234 (7)0.0355 (7)0.0248 (7)0.0037 (6)0.0013 (5)0.0005 (5)
C170.0300 (7)0.0254 (6)0.0276 (7)0.0055 (6)0.0024 (6)0.0018 (5)
C180.0266 (7)0.0213 (6)0.0252 (7)0.0016 (5)0.0019 (5)0.0010 (5)
C190.0204 (6)0.0220 (6)0.0192 (6)0.0001 (5)0.0018 (5)0.0009 (4)
C200.0296 (7)0.0200 (6)0.0231 (6)0.0026 (5)0.0045 (5)0.0013 (5)
C210.0382 (8)0.0249 (6)0.0292 (7)0.0052 (6)0.0053 (6)0.0001 (5)
C220.0216 (7)0.0292 (7)0.0384 (8)0.0025 (6)0.0013 (6)0.0030 (6)
Geometric parameters (Å, º) top
N1—C81.3722 (16)C9—C101.4217 (17)
N1—C91.3860 (16)C11—H11A0.9800
N1—C111.4566 (16)C11—H11B0.9800
N2—C101.1493 (17)C11—H11C0.9800
N3—C191.3724 (16)C12—C131.4917 (18)
N3—C201.3897 (16)C12—H12A0.9600
N3—C221.4522 (17)C12—H12B0.9600
N4—C211.1474 (19)C12—H12C0.9600
C1—C21.4949 (17)C13—C201.3774 (19)
C1—H1A0.9800C13—C141.4211 (18)
C1—H1B0.9800C14—C151.4071 (19)
C1—H1C0.9800C14—C191.4123 (18)
C2—C91.3754 (17)C15—C161.3794 (19)
C2—C31.4177 (17)C15—H150.9500
C3—C41.4072 (18)C16—C171.410 (2)
C3—C81.4172 (17)C16—H160.9500
C4—C51.3739 (19)C17—C181.3730 (19)
C4—H40.9500C17—H170.9500
C5—C61.404 (2)C18—C191.4019 (17)
C5—H50.9500C18—H180.9500
C6—C71.384 (2)C20—C211.4209 (19)
C6—H60.9500C22—H22A0.9800
C7—C81.3978 (17)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—N1—C9107.39 (10)N1—C11—H11C109.5
C8—N1—C11126.43 (11)H11A—C11—H11C109.5
C9—N1—C11126.07 (11)H11B—C11—H11C109.5
C19—N3—C20107.26 (11)C13—C12—H12A109.4
C19—N3—C22126.58 (11)C13—C12—H12B109.5
C20—N3—C22126.05 (11)H12A—C12—H12B109.5
C2—C1—H1A109.5C13—C12—H12C109.5
C2—C1—H1B109.5H12A—C12—H12C109.5
H1A—C1—H1B109.5H12B—C12—H12C109.5
C2—C1—H1C109.5C20—C13—C14105.86 (11)
H1A—C1—H1C109.5C20—C13—C12126.36 (12)
H1B—C1—H1C109.5C14—C13—C12127.78 (13)
C9—C2—C3105.86 (11)C15—C14—C19119.34 (12)
C9—C2—C1126.89 (12)C15—C14—C13133.08 (12)
C3—C2—C1127.24 (11)C19—C14—C13107.58 (12)
C4—C3—C8119.41 (11)C16—C15—C14118.59 (12)
C4—C3—C2132.95 (11)C16—C15—H15120.7
C8—C3—C2107.62 (11)C14—C15—H15120.7
C5—C4—C3118.40 (12)C15—C16—C17121.03 (13)
C5—C4—H4120.8C15—C16—H16119.5
C3—C4—H4120.8C17—C16—H16119.5
C4—C5—C6121.49 (13)C18—C17—C16121.76 (12)
C4—C5—H5119.3C18—C17—H17119.1
C6—C5—H5119.3C16—C17—H17119.1
C7—C6—C5121.70 (12)C17—C18—C19117.34 (12)
C7—C6—H6119.2C17—C18—H18121.3
C5—C6—H6119.2C19—C18—H18121.3
C6—C7—C8117.01 (12)N3—C19—C18129.57 (12)
C6—C7—H7121.5N3—C19—C14108.50 (11)
C8—C7—H7121.5C18—C19—C14121.94 (12)
N1—C8—C7129.87 (11)C13—C20—N3110.79 (11)
N1—C8—C3108.18 (10)C13—C20—C21127.91 (12)
C7—C8—C3121.96 (12)N3—C20—C21121.29 (12)
C2—C9—N1110.94 (11)N4—C21—C20178.97 (16)
C2—C9—C10126.43 (12)N3—C22—H22A109.5
N1—C9—C10122.63 (11)N3—C22—H22B109.5
N2—C10—C9176.77 (14)H22A—C22—H22B109.5
N1—C11—H11A109.5N3—C22—H22C109.5
N1—C11—H11B109.5H22A—C22—H22C109.5
H11A—C11—H11B109.5H22B—C22—H22C109.5
C9—C2—C3—C4178.15 (14)C20—C13—C14—C15179.38 (13)
C1—C2—C3—C40.8 (2)C12—C13—C14—C150.1 (2)
C9—C2—C3—C80.48 (14)C20—C13—C14—C190.25 (14)
C1—C2—C3—C8179.42 (12)C12—C13—C14—C19179.58 (13)
C8—C3—C4—C50.77 (19)C19—C14—C15—C160.34 (18)
C2—C3—C4—C5179.27 (13)C13—C14—C15—C16179.94 (13)
C3—C4—C5—C60.7 (2)C14—C15—C16—C170.36 (19)
C4—C5—C6—C71.1 (2)C15—C16—C17—C180.3 (2)
C5—C6—C7—C80.1 (2)C16—C17—C18—C190.5 (2)
C9—N1—C8—C7179.28 (12)C20—N3—C19—C18178.96 (13)
C11—N1—C8—C72.9 (2)C22—N3—C19—C182.4 (2)
C9—N1—C8—C30.91 (14)C20—N3—C19—C140.89 (14)
C11—N1—C8—C3177.24 (11)C22—N3—C19—C14177.41 (12)
C6—C7—C8—N1178.39 (12)C17—C18—C19—N3178.95 (12)
C6—C7—C8—C31.40 (19)C17—C18—C19—C141.23 (19)
C4—C3—C8—N1177.98 (11)C15—C14—C19—N3178.98 (11)
C2—C3—C8—N10.87 (14)C13—C14—C19—N30.71 (14)
C4—C3—C8—C71.85 (19)C15—C14—C19—C181.17 (19)
C2—C3—C8—C7179.30 (11)C13—C14—C19—C18179.14 (11)
C3—C2—C9—N10.08 (14)C14—C13—C20—N30.30 (14)
C1—C2—C9—N1178.86 (12)C12—C13—C20—N3179.04 (12)
C3—C2—C9—C10179.90 (12)C14—C13—C20—C21178.78 (13)
C1—C2—C9—C101.2 (2)C12—C13—C20—C211.9 (2)
C8—N1—C9—C20.62 (14)C19—N3—C20—C130.75 (14)
C11—N1—C9—C2176.97 (12)C22—N3—C20—C13177.29 (12)
C8—N1—C9—C10179.36 (11)C19—N3—C20—C21178.41 (12)
C11—N1—C9—C103.01 (19)C22—N3—C20—C211.86 (19)
C2—C9—C10—N213 (3)C13—C20—C21—N4103 (10)
N1—C9—C10—N2167 (3)N3—C20—C21—N476 (10)

Experimental details

Crystal data
Chemical formulaC11H10N2
Mr170.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.8066 (18), 15.359 (3), 13.480 (3)
β (°) 95.67 (3)
V3)1814.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16175, 4303, 3462
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.03
No. of reflections4303
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

 

References

First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnyder, H. R. & Eliel, E. L. (1948). J. Am. Chem. Soc. 70, 1703–1705.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds