metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m898-m899

catena-Poly[[[[3-(2-pyrid­yl)-1H-pyra­zole]nickel(II)]-μ-oxalato] sesquihydrate]

aDepartment of Pharmacy, Shandong Medical College, Jinan 250002, People's Republic of China, and bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 73000, People's Republic of China
*Correspondence e-mail: liuzhilu2009@yahoo.com.cn

(Received 25 June 2009; accepted 5 July 2009; online 11 July 2009)

In the title compound, {[Ni(C2O4)(C8H7N3)]·1.5H2O}n, both unique NiII ions are chelated by an O,O′-bidentate oxalate ion and an N,N′-bidentate 3-(2-pyrid­yl)pyrazole mol­ecule. A second, symmetry-generated, oxalate ion completes a distorted cis-NiN2O4 octa­hedral geometry for both metal centres. The bridging oxalate ions result in two distinct wave-like polymeric chains propagating in [100]. The packing is consolidated by N—H⋯O and O—H⋯O hydrogen bonds. The crystal studied was found to be an inversion twin.

Related literature

For related literature on coordination polymers, see: Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2O4)(C8H7N3)]·1.5H2O

  • Mr = 318.92

  • Orthorhombic, P n a 21

  • a = 9.763 (2) Å

  • b = 9.1970 (18) Å

  • c = 29.352 (6) Å

  • V = 2635.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.890

  • 17815 measured reflections

  • 4882 independent reflections

  • 3723 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.00

  • 4882 reflections

  • 385 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2287 Friedel pairs

  • Flack parameter: 0.50 (3)

Table 1
Selected bond lengths (Å)

Ni1—O1 2.152 (5)
Ni1—O3 2.200 (6)
Ni1—O2i 2.163 (6)
Ni1—O4i 2.177 (4)
Ni1—N1 2.259 (6)
Ni1—N2 2.230 (6)
Ni2—O6 2.159 (6)
Ni2—O8 2.188 (4)
Ni2—O5ii 2.142 (4)
Ni2—O7ii 2.217 (6)
Ni2—N4 2.285 (6)
Ni2—N5 2.205 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O11iii 0.97 (4) 1.81 (2) 2.745 (10) 160 (5)
N6—H6A⋯O10iv 0.98 (16) 2.0 (2) 2.732 (9) 133 (5)
O9—H2W⋯O7v 0.82 (4) 2.02 (4) 2.822 (9) 166 (6)
O9—H1W⋯O11vi 0.82 (12) 2.22 (15) 2.813 (11) 130 (16)
O10—H3W⋯O4vii 0.82 (5) 2.30 (7) 2.834 (9) 123 (7)
O10—H4W⋯O9vi 0.82 (4) 2.08 (3) 2.811 (11) 148 (5)
O11—H5W⋯O9viii 0.82 (5) 2.15 (4) 2.813 (11) 138 (5)
O11—H6W⋯O8ix 0.82 (4) 2.17 (4) 2.876 (9) 144 (6)
Symmetry codes: (iii) [-x+1, -y+2, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ix) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of coordination polymers (Ward, 2007), we now report the synthesis and crystal structural characterization of the title compound, (I).

The NII ions are hexcoordianted, chelated by two oxalate and one 3-(2-pyridyl)pyrazole ligand (Table 1). While each oxalate ligand acts as one bridige to chalate two Ni ions, forming one wave-like line with Ni···Ni distance being 5.562 Å, shown in Figure 2. The structure is consolidated by N—H···O and O—H···O hydrogen bonds (Table 2, Figure 3).

Related literature top

For related literature on coordination polymers, see: Ward (2007).

Experimental top

The synthesis was performed in a 25 ml Teflon-lined stainless steel vessel: NiCl2 (1 mmol), 3-(2-pyridyl)pyrazole (1 mmol), oxalic acid (1 mmol), and H2O (10 ml) were mixed and heated to 433 K for three days. On cooling, green blocks of (I) were recovered. Anal. Calc. for C20H20Ni2N6O11: C 37.60, H 3.13, N 13.16%; Found: 37.56, H 3.06, N 13.10%.

Refinement top

The C-bound H atoms were geometrically planced (C—H = 0.93Å) and refined as riding with Uiso = 1.2Ueq(C). The N- and O-bound H atoms were located in difference maps and refined with distance restraints: N—H = 0.97 (1)Å, O—H = 0.82 (2)Å, H···H = 1.38 (2)Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atoms labelled. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the chain strcuture of (I).
[Figure 3] Fig. 3. A view of the packing strcuture of (I).
catena-Poly[[[[3-(2-pyridyl)-1<>H-pyrazole]nickel(II)]-µ-oxalato] sesquihydrate] top
Crystal data top
[Ni(C2O4)(C8H7N3)]·1.5H2OF(000) = 1304
Mr = 318.92Dx = 1.607 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4779 reflections
a = 9.763 (2) Åθ = 2.3–25.5°
b = 9.1970 (18) ŵ = 1.50 mm1
c = 29.352 (6) ÅT = 293 K
V = 2635.5 (9) Å3Block, green
Z = 80.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube3723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.841, Tmax = 0.890k = 1110
17815 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.078P)2 + 0.5477P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4882 reflectionsΔρmax = 0.47 e Å3
385 parametersΔρmin = 0.37 e Å3
12 restraintsAbsolute structure: Flack (1983), 2287 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (3)
Crystal data top
[Ni(C2O4)(C8H7N3)]·1.5H2OV = 2635.5 (9) Å3
Mr = 318.92Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 9.763 (2) ŵ = 1.50 mm1
b = 9.1970 (18) ÅT = 293 K
c = 29.352 (6) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3723 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.890Rint = 0.059
17815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139Δρmax = 0.47 e Å3
S = 1.00Δρmin = 0.37 e Å3
4882 reflectionsAbsolute structure: Flack (1983), 2287 Friedel pairs
385 parametersAbsolute structure parameter: 0.50 (3)
12 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.31148 (9)1.09616 (9)0.84957 (7)0.0406 (2)
Ni20.55514 (8)0.09515 (9)0.08796 (7)0.0408 (2)
C10.3921 (9)0.0950 (8)0.0119 (3)0.049 (2)
H10.37310.00490.00100.059*
C20.3379 (10)0.2187 (11)0.0082 (4)0.062 (2)
H20.28090.21110.03350.074*
C30.3688 (12)0.3506 (12)0.0094 (3)0.077 (4)
H30.33250.43490.00330.092*
C40.4564 (11)0.3578 (10)0.0472 (4)0.060 (3)
H40.48500.44720.05850.073*
C50.4996 (10)0.2304 (8)0.0671 (3)0.041 (2)
C60.5898 (9)0.2314 (8)0.1082 (3)0.036 (2)
C70.6452 (10)0.3438 (9)0.1323 (4)0.062 (3)
H70.63550.44300.12700.075*
C80.7179 (10)0.2767 (11)0.1658 (4)0.061 (3)
H80.76640.32330.18880.073*
C90.3240 (8)0.2826 (8)0.0649 (3)0.0342 (19)
C100.2918 (7)0.2229 (7)0.1133 (3)0.0254 (15)
C110.5767 (6)1.2152 (8)0.8712 (2)0.0236 (13)
C120.5476 (8)1.2747 (8)0.8228 (3)0.0325 (18)
C130.1336 (9)0.9194 (11)0.9256 (3)0.057 (2)
H130.10731.01110.93570.069*
C140.0855 (11)0.7996 (12)0.9485 (3)0.071 (3)
H140.02920.80960.97380.085*
C150.1225 (10)0.6663 (12)0.9331 (4)0.070 (3)
H150.09370.58440.94900.084*
C160.1990 (10)0.6493 (10)0.8960 (4)0.060 (3)
H160.21580.55700.88430.072*
C170.2534 (9)0.7723 (8)0.8749 (3)0.0372 (19)
C180.3377 (9)0.7695 (8)0.8356 (3)0.040 (2)
C190.3938 (12)0.6511 (11)0.8106 (4)0.071 (3)
H190.37890.55260.81570.085*
C200.4713 (14)0.7090 (12)0.7784 (5)0.088 (4)
H200.52560.65820.75790.106*
N10.2170 (6)0.9107 (6)0.8890 (2)0.0378 (15)
N20.3773 (6)0.8926 (7)0.8146 (2)0.0384 (15)
N30.4576 (7)0.8577 (8)0.7808 (2)0.0516 (18)
N40.4710 (6)0.1009 (6)0.0492 (2)0.0353 (14)
N50.6263 (6)0.1013 (7)0.1239 (2)0.0375 (14)
N60.7085 (8)0.1366 (9)0.1604 (2)0.0536 (19)
O10.4923 (5)1.1355 (5)0.88962 (16)0.0351 (10)
O20.6957 (5)1.2463 (5)0.8884 (3)0.0398 (17)
O30.4389 (5)1.2387 (5)0.8069 (2)0.0347 (16)
O40.6367 (5)1.3553 (5)0.80613 (16)0.0354 (10)
O50.2318 (4)0.3592 (5)0.04713 (16)0.0335 (10)
O60.4326 (5)0.2429 (5)0.0479 (3)0.0378 (17)
O70.1787 (6)0.2608 (6)0.1324 (2)0.0385 (17)
O80.3784 (4)0.1410 (5)0.13145 (17)0.0383 (11)
O90.6278 (8)0.6448 (6)0.2198 (2)0.0605 (12)
O100.8552 (8)0.9517 (8)0.2145 (2)0.0727 (17)
O110.3970 (8)0.9636 (7)0.2236 (2)0.0667 (16)
H6W0.412 (4)0.905 (5)0.2033 (15)0.077 (17)*
H2W0.632 (6)0.689 (6)0.1956 (11)0.074 (19)*
H1W0.672 (16)0.569 (10)0.221 (3)0.083 (10)*
H3W0.860 (5)0.989 (8)0.2399 (12)0.085 (2)*
H4W0.927 (3)0.918 (7)0.2051 (17)0.093 (2)*
H5W0.321 (4)0.957 (7)0.235 (3)0.107 (4)*
H3A0.490 (5)0.935 (4)0.7611 (14)0.064 (13)*
H6A0.71 (3)0.069 (18)0.186 (5)0.059 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0366 (4)0.0418 (5)0.0432 (5)0.0004 (4)0.0012 (4)0.0039 (5)
Ni20.0352 (4)0.0420 (5)0.0453 (5)0.0012 (4)0.0004 (4)0.0020 (5)
C10.064 (5)0.039 (4)0.045 (4)0.017 (4)0.007 (4)0.010 (3)
C20.070 (6)0.072 (6)0.044 (5)0.024 (5)0.019 (4)0.002 (5)
C30.116 (9)0.074 (7)0.041 (5)0.056 (6)0.014 (5)0.004 (5)
C40.092 (7)0.037 (5)0.053 (5)0.014 (4)0.001 (5)0.008 (4)
C50.047 (5)0.039 (4)0.039 (5)0.016 (4)0.012 (4)0.007 (3)
C60.043 (4)0.030 (4)0.035 (5)0.005 (3)0.016 (3)0.005 (3)
C70.081 (6)0.024 (4)0.082 (7)0.015 (4)0.021 (6)0.010 (4)
C80.062 (5)0.057 (5)0.062 (6)0.012 (5)0.037 (5)0.015 (5)
C90.051 (5)0.024 (3)0.028 (4)0.025 (4)0.000 (3)0.011 (3)
C100.016 (3)0.031 (3)0.029 (4)0.002 (3)0.002 (3)0.000 (3)
C110.016 (3)0.027 (3)0.028 (3)0.016 (3)0.002 (2)0.002 (3)
C120.037 (5)0.031 (3)0.029 (4)0.010 (3)0.005 (3)0.007 (3)
C130.060 (5)0.077 (6)0.035 (4)0.011 (4)0.008 (4)0.001 (4)
C140.095 (7)0.082 (7)0.035 (5)0.046 (7)0.021 (5)0.007 (5)
C150.082 (7)0.055 (6)0.071 (7)0.026 (5)0.006 (5)0.033 (5)
C160.065 (5)0.033 (5)0.083 (7)0.018 (4)0.010 (5)0.017 (5)
C170.044 (5)0.031 (4)0.038 (5)0.005 (3)0.005 (4)0.001 (3)
C180.036 (4)0.031 (4)0.051 (6)0.000 (3)0.011 (4)0.004 (3)
C190.096 (8)0.038 (5)0.079 (7)0.002 (5)0.024 (6)0.006 (5)
C200.124 (10)0.046 (5)0.095 (10)0.030 (7)0.036 (8)0.023 (7)
N10.043 (3)0.035 (4)0.036 (3)0.002 (2)0.006 (3)0.004 (3)
N20.037 (3)0.034 (3)0.044 (3)0.006 (2)0.005 (3)0.003 (3)
N30.050 (4)0.047 (4)0.058 (5)0.009 (3)0.019 (3)0.001 (3)
N40.035 (3)0.037 (3)0.034 (3)0.016 (2)0.006 (2)0.007 (3)
N50.041 (3)0.036 (3)0.036 (3)0.000 (3)0.014 (3)0.004 (3)
N60.061 (4)0.058 (5)0.042 (4)0.005 (3)0.027 (3)0.000 (3)
O10.034 (2)0.043 (3)0.029 (2)0.001 (2)0.004 (2)0.009 (2)
O20.042 (4)0.042 (4)0.035 (4)0.009 (2)0.019 (3)0.0142 (19)
O30.023 (3)0.045 (4)0.036 (4)0.0085 (19)0.005 (2)0.012 (2)
O40.034 (2)0.041 (3)0.031 (2)0.009 (2)0.0058 (19)0.008 (2)
O50.030 (2)0.039 (2)0.032 (2)0.006 (2)0.006 (2)0.011 (2)
O60.022 (3)0.056 (4)0.036 (4)0.0070 (19)0.006 (2)0.018 (2)
O70.035 (3)0.054 (4)0.026 (4)0.015 (2)0.016 (2)0.008 (2)
O80.028 (2)0.052 (3)0.035 (3)0.005 (2)0.003 (2)0.016 (2)
O90.090 (4)0.057 (3)0.034 (2)0.003 (4)0.015 (2)0.007 (3)
O100.078 (5)0.096 (5)0.043 (4)0.011 (4)0.014 (4)0.017 (4)
O110.084 (5)0.071 (4)0.045 (4)0.006 (4)0.011 (4)0.005 (3)
Geometric parameters (Å, º) top
Ni1—O12.152 (5)C11—O21.299 (8)
Ni1—O32.200 (6)C11—C121.550 (11)
Ni1—O2i2.163 (6)C12—O31.206 (10)
Ni1—O4i2.177 (4)C12—O41.243 (9)
Ni1—N12.259 (6)C13—N11.349 (11)
Ni1—N22.230 (6)C13—C141.374 (12)
Ni2—O62.159 (6)C13—H130.9300
Ni2—O82.188 (4)C14—C151.355 (16)
Ni2—O5ii2.142 (4)C14—H140.9300
Ni2—O7ii2.217 (6)C15—C161.330 (15)
Ni2—N42.285 (6)C15—H150.9300
Ni2—N52.205 (6)C16—C171.395 (11)
C1—N41.340 (11)C16—H160.9300
C1—C21.386 (11)C17—N11.385 (10)
C1—H10.9300C17—C181.416 (13)
C2—C31.353 (14)C18—N21.346 (10)
C2—H20.9300C18—C191.424 (13)
C3—C41.401 (15)C19—C201.321 (17)
C3—H30.9300C19—H190.9300
C4—C51.376 (12)C20—N31.376 (12)
C4—H40.9300C20—H200.9300
C5—N41.331 (10)N2—N31.304 (9)
C5—C61.494 (13)N3—H3A0.97 (4)
C6—N51.331 (9)N5—N61.376 (9)
C6—C71.363 (12)N6—H6A0.98 (16)
C7—C81.362 (15)O2—Ni1iii2.163 (6)
C7—H70.9300O4—Ni1iii2.177 (4)
C8—N61.301 (11)O5—Ni2iv2.142 (4)
C8—H80.9300O7—Ni2iv2.217 (6)
C9—O61.227 (9)O9—H2W0.82 (4)
C9—O51.257 (9)O9—H1W0.82 (12)
C9—C101.555 (10)O10—H3W0.82 (5)
C10—O81.251 (8)O10—H4W0.82 (4)
C10—O71.287 (9)O11—H6W0.82 (4)
C11—O11.228 (7)O11—H5W0.82 (5)
O1—Ni1—O2i91.6 (2)O1—C11—O2124.2 (7)
O1—Ni1—O4i158.28 (17)O1—C11—C12119.4 (6)
O2i—Ni1—O4i76.2 (2)O2—C11—C12116.3 (6)
O1—Ni1—O375.4 (2)O3—C12—O4128.8 (8)
O2i—Ni1—O3101.4 (2)O3—C12—C11114.9 (7)
O4i—Ni1—O389.3 (2)O4—C12—C11116.3 (7)
O1—Ni1—N299.0 (2)N1—C13—C14123.2 (9)
O2i—Ni1—N2162.9 (2)N1—C13—H13118.4
O4i—Ni1—N297.4 (2)C14—C13—H13118.4
O3—Ni1—N294.3 (2)C15—C14—C13118.2 (9)
O1—Ni1—N1100.5 (2)C15—C14—H14120.9
O2i—Ni1—N191.3 (2)C13—C14—H14120.9
O4i—Ni1—N197.8 (2)C16—C15—C14121.9 (8)
O3—Ni1—N1166.7 (2)C16—C15—H15119.0
N2—Ni1—N173.7 (2)C14—C15—H15119.1
O5ii—Ni2—O691.0 (2)C15—C16—C17118.8 (9)
O5ii—Ni2—O8157.52 (16)C15—C16—H16120.6
O6—Ni2—O876.1 (2)C17—C16—H16120.6
O5ii—Ni2—N5100.1 (2)N1—C17—C16121.0 (8)
O6—Ni2—N5162.0 (2)N1—C17—C18114.2 (7)
O8—Ni2—N597.3 (2)C16—C17—C18124.6 (8)
O5ii—Ni2—O7ii76.95 (19)N2—C18—C17121.7 (7)
O6—Ni2—O7ii104.2 (2)N2—C18—C19107.2 (8)
O8—Ni2—O7ii88.3 (2)C17—C18—C19131.2 (8)
N5—Ni2—O7ii92.1 (2)C20—C19—C18106.3 (8)
O5ii—Ni2—N499.5 (2)C20—C19—H19126.8
O6—Ni2—N491.5 (2)C18—C19—H19126.9
O8—Ni2—N499.2 (2)C19—C20—N3108.0 (9)
N5—Ni2—N472.9 (2)C19—C20—H20126.0
O7ii—Ni2—N4163.9 (2)N3—C20—H20126.0
N4—C1—C2122.3 (8)C13—N1—C17116.6 (7)
N4—C1—H1118.9C13—N1—Ni1127.5 (6)
C2—C1—H1118.9C17—N1—Ni1115.8 (5)
C3—C2—C1119.2 (9)N3—N2—C18108.4 (7)
C3—C2—H2120.4N3—N2—Ni1136.9 (5)
C1—C2—H2120.4C18—N2—Ni1114.3 (5)
C2—C3—C4118.7 (8)N2—N3—C20109.9 (8)
C2—C3—H3120.6N2—N3—H3A118 (3)
C4—C3—H3120.6C20—N3—H3A132 (3)
C5—C4—C3118.9 (9)C5—N4—C1118.6 (7)
C5—C4—H4120.6C5—N4—Ni2115.7 (5)
C3—C4—H4120.6C1—N4—Ni2125.6 (5)
N4—C5—C4122.0 (9)C6—N5—N6102.3 (6)
N4—C5—C6116.6 (7)C6—N5—Ni2119.1 (5)
C4—C5—C6121.2 (8)N6—N5—Ni2138.5 (5)
N5—C6—C7113.3 (8)C8—N6—N5111.7 (7)
N5—C6—C5115.6 (7)C8—N6—H6A123 (10)
C7—C6—C5131.1 (8)N5—N6—H6A116 (10)
C6—C7—C8103.7 (8)C11—O1—Ni1114.3 (4)
C6—C7—H7128.1C11—O2—Ni1iii114.2 (5)
C8—C7—H7128.1C12—O3—Ni1116.1 (6)
N6—C8—C7108.9 (7)C12—O4—Ni1iii116.1 (5)
N6—C8—H8125.6C9—O5—Ni2iv117.1 (4)
C7—C8—H8125.6C9—O6—Ni2116.4 (6)
O6—C9—O5128.1 (7)C10—O7—Ni2iv111.8 (5)
O6—C9—C10116.2 (7)C10—O8—Ni2113.6 (4)
O5—C9—C10115.6 (6)H2W—O9—H1W116 (8)
O8—C10—O7123.8 (8)H3W—O10—H4W115 (5)
O8—C10—C9117.7 (6)H6W—O11—H5W114 (6)
O7—C10—C9118.5 (6)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+5/2, z; (iv) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11v0.97 (4)1.81 (2)2.745 (10)160 (5)
N6—H6A···O10vi0.98 (16)2.0 (2)2.732 (9)133 (5)
O9—H2W···O7vii0.82 (4)2.02 (4)2.822 (9)166 (6)
O9—H1W···O11viii0.82 (12)2.22 (15)2.813 (11)130 (16)
O10—H3W···O4ix0.82 (5)2.30 (7)2.834 (9)123 (7)
O10—H4W···O9viii0.82 (4)2.08 (3)2.811 (11)148 (5)
O11—H5W···O9x0.82 (5)2.15 (4)2.813 (11)138 (5)
O11—H6W···O8xi0.82 (4)2.17 (4)2.876 (9)144 (6)
Symmetry codes: (v) x+1, y+2, z+1/2; (vi) x, y1, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+3/2, z; (ix) x+3/2, y1/2, z1/2; (x) x1/2, y+3/2, z; (xi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C2O4)(C8H7N3)]·1.5H2O
Mr318.92
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.763 (2), 9.1970 (18), 29.352 (6)
V3)2635.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.841, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
17815, 4882, 3723
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.00
No. of reflections4882
No. of parameters385
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.37
Absolute structureFlack (1983), 2287 Friedel pairs
Absolute structure parameter0.50 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.152 (5)Ni2—O62.159 (6)
Ni1—O32.200 (6)Ni2—O82.188 (4)
Ni1—O2i2.163 (6)Ni2—O5ii2.142 (4)
Ni1—O4i2.177 (4)Ni2—O7ii2.217 (6)
Ni1—N12.259 (6)Ni2—N42.285 (6)
Ni1—N22.230 (6)Ni2—N52.205 (6)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11iii0.97 (4)1.81 (2)2.745 (10)160 (5)
N6—H6A···O10iv0.98 (16)2.0 (2)2.732 (9)133 (5)
O9—H2W···O7v0.82 (4)2.02 (4)2.822 (9)166 (6)
O9—H1W···O11vi0.82 (12)2.22 (15)2.813 (11)130 (16)
O10—H3W···O4vii0.82 (5)2.30 (7)2.834 (9)123 (7)
O10—H4W···O9vi0.82 (4)2.08 (3)2.811 (11)148 (5)
O11—H5W···O9viii0.82 (5)2.15 (4)2.813 (11)138 (5)
O11—H6W···O8ix0.82 (4)2.17 (4)2.876 (9)144 (6)
Symmetry codes: (iii) x+1, y+2, z+1/2; (iv) x, y1, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+3/2, z; (vii) x+3/2, y1/2, z1/2; (viii) x1/2, y+3/2, z; (ix) x, y+1, z.
 

Acknowledgements

This work was supported by the Chinese Academy of Sciences (Hundred Talents Program) and the Ministry of Science and Technology of China (project of `973' plan, No. 2007CB607606)

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m898-m899
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds