organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,6-Di­chloro­benz­yl)pyrrolidine-1,3-dione

aCollege of Chemistry & Bioengineering, Changsha University of Science & Technology, Changsha 410076, People's Republic of China, and bDepartment of Clinical Laboratory, XiangYa Medical College of Central, South University, Changsha 410013, People's Republic of China
*Correspondence e-mail: huangpengmian@126.com

(Received 25 June 2009; accepted 29 June 2009; online 4 July 2009)

In the title compound, C11H9Cl2NO2, the dihedral anngle between the mean planes of the aromatic ring and the twisted pyrrolidinedione ring is 79.98 (9)°.

Related literature

For the synthesis, see: Duan et al. (2005[Duan, X. M., Han, J., Chen, L. G., Xu, Y. J. & Li, Y. (2005). Fine Chem. 22, 39-40, 52.]). For the pharmaceutical properties of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2009[Obniska, J., Kaminski, K., Skrzynska, D. & Pichor, J. (2009). Eur. J. Med. Chem. 44, 2224-2233.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Cl2NO2

  • Mr = 258.09

  • Orthorhombic, P 21 21 21

  • a = 4.8057 (5) Å

  • b = 9.4388 (8) Å

  • c = 23.936 (2) Å

  • V = 1085.74 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 113 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.923, Tmax = 0.944

  • 7528 measured reflections

  • 2562 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.09

  • 2562 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1017 Friedel pairs

  • Flack parameter: 0.01 (6)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

The derivatives of pyrrolidine-2,5-dione possess valuable pharmaceutical properties (Obniska et al., 2009). In this paper, synthesis and the crystal structure of the title compound, (I), Fig 1, is reported.

Related literature top

For the synthesis, see: Duan et al. (2005). For the pharmaceutical properties of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2009).

Experimental top

The title compound was prepared according to the procedure of Duan et al. (2005). The title compound (40 mg) was dissolved in a mixture of chloroform (5 ml) and ethanol (3 ml) and the solution was kept at room temperature for 15 days. Evaporation of the solution gave colourless blocks of (I).

Refinement top

All H atoms were included in the idealized positions (C—H = 0.93–0.99Å) and refined as riding with and refined in a riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as spheres of arbitrary radius.
2-(2,6-Dichlorobenzyl)pyrrolidine-1,3-dione top
Crystal data top
C11H9Cl2NO2Dx = 1.579 Mg m3
Mr = 258.09Melting point = 409–411 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 2881 reflections
a = 4.8057 (5) Åθ = 1.7–27.9°
b = 9.4388 (8) ŵ = 0.58 mm1
c = 23.936 (2) ÅT = 113 K
V = 1085.74 (18) Å3Block, colorless
Z = 40.14 × 0.12 × 0.10 mm
F(000) = 528
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2562 independent reflections
Radiation source: rotating anode2400 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 46
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.923, Tmax = 0.944l = 3031
7528 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.1572P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.28 e Å3
2562 reflectionsΔρmin = 0.27 e Å3
146 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.027 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1017 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (6)
Crystal data top
C11H9Cl2NO2V = 1085.74 (18) Å3
Mr = 258.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8057 (5) ŵ = 0.58 mm1
b = 9.4388 (8) ÅT = 113 K
c = 23.936 (2) Å0.14 × 0.12 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2562 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2400 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.944Rint = 0.029
7528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.27 e Å3
2562 reflectionsAbsolute structure: Flack (1983), 1017 Friedel pairs
146 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00935 (11)0.15827 (4)0.039298 (15)0.02779 (12)
Cl20.01306 (10)0.14810 (5)0.231345 (15)0.02661 (12)
O10.4371 (3)0.35252 (13)0.15425 (5)0.0256 (3)
O20.2345 (3)0.17916 (13)0.03882 (5)0.0258 (3)
N10.1077 (3)0.23490 (14)0.10180 (5)0.0172 (3)
C10.2311 (4)0.35434 (18)0.12493 (6)0.0201 (3)
C20.0631 (4)0.48127 (18)0.10689 (8)0.0276 (4)
H2A0.05140.51740.13820.033*
H2B0.18630.55820.09360.033*
C30.1211 (4)0.42692 (18)0.05958 (7)0.0222 (4)
H3A0.05200.46040.02290.027*
H3B0.31560.45910.06450.027*
C40.1017 (4)0.26745 (17)0.06376 (6)0.0186 (3)
C50.2043 (4)0.09082 (17)0.11224 (6)0.0177 (3)
H5A0.27350.04960.07680.021*
H5B0.36190.09390.13890.021*
C60.0205 (4)0.00365 (15)0.13563 (6)0.0160 (3)
C70.1336 (4)0.11631 (17)0.10562 (7)0.0193 (3)
C80.3417 (4)0.20312 (18)0.12690 (8)0.0255 (4)
H80.41490.27830.10500.031*
C90.4416 (4)0.17880 (19)0.18054 (8)0.0283 (4)
H90.58510.23700.19530.034*
C100.3327 (4)0.0703 (2)0.21228 (7)0.0253 (4)
H100.39870.05380.24910.030*
C110.1251 (4)0.01445 (17)0.18967 (7)0.0195 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0382 (3)0.0230 (2)0.02216 (19)0.0038 (2)0.0022 (2)0.00636 (14)
Cl20.0287 (2)0.0340 (2)0.01716 (18)0.0004 (2)0.00099 (17)0.00597 (15)
O10.0261 (7)0.0286 (6)0.0223 (5)0.0089 (6)0.0024 (5)0.0028 (5)
O20.0255 (7)0.0264 (7)0.0254 (6)0.0043 (5)0.0073 (5)0.0028 (5)
N10.0175 (7)0.0171 (6)0.0171 (6)0.0008 (6)0.0003 (6)0.0001 (5)
C10.0224 (9)0.0194 (8)0.0186 (7)0.0029 (7)0.0033 (6)0.0012 (6)
C20.0315 (11)0.0185 (7)0.0329 (9)0.0017 (8)0.0009 (8)0.0001 (7)
C30.0218 (9)0.0207 (8)0.0242 (8)0.0039 (7)0.0037 (7)0.0034 (7)
C40.0177 (8)0.0227 (8)0.0155 (7)0.0009 (7)0.0020 (6)0.0018 (6)
C50.0188 (8)0.0153 (7)0.0189 (7)0.0005 (6)0.0016 (7)0.0002 (6)
C60.0141 (8)0.0167 (7)0.0174 (6)0.0022 (7)0.0003 (6)0.0030 (5)
C70.0185 (8)0.0183 (7)0.0210 (7)0.0012 (7)0.0001 (7)0.0023 (6)
C80.0231 (10)0.0179 (8)0.0354 (9)0.0017 (7)0.0043 (8)0.0042 (7)
C90.0215 (10)0.0245 (9)0.0388 (10)0.0014 (8)0.0007 (8)0.0156 (7)
C100.0221 (10)0.0303 (9)0.0235 (8)0.0061 (8)0.0035 (7)0.0109 (7)
C110.0172 (8)0.0223 (8)0.0190 (7)0.0021 (7)0.0014 (7)0.0031 (6)
Geometric parameters (Å, º) top
Cl1—C71.7417 (17)C3—H3B0.9900
Cl2—C111.7400 (17)C5—C61.509 (2)
O1—C11.213 (2)C5—H5A0.9900
O2—C41.208 (2)C5—H5B0.9900
N1—C11.389 (2)C6—C71.394 (2)
N1—C41.391 (2)C6—C111.398 (2)
N1—C51.459 (2)C7—C81.390 (2)
C1—C21.508 (2)C8—C91.390 (3)
C2—C31.526 (3)C8—H80.9500
C2—H2A0.9900C9—C101.378 (3)
C2—H2B0.9900C9—H90.9500
C3—C41.511 (2)C10—C111.389 (2)
C3—H3A0.9900C10—H100.9500
C1—N1—C4112.99 (14)C6—C5—H5A109.0
C1—N1—C5123.52 (14)N1—C5—H5B109.0
C4—N1—C5123.25 (13)C6—C5—H5B109.0
O1—C1—N1124.58 (16)H5A—C5—H5B107.8
O1—C1—C2127.86 (16)C7—C6—C11115.46 (15)
N1—C1—C2107.56 (14)C7—C6—C5122.61 (14)
C1—C2—C3104.84 (14)C11—C6—C5121.91 (14)
C1—C2—H2A110.8C8—C7—C6122.79 (16)
C3—C2—H2A110.8C8—C7—Cl1116.53 (14)
C1—C2—H2B110.8C6—C7—Cl1120.64 (13)
C3—C2—H2B110.8C7—C8—C9119.33 (17)
H2A—C2—H2B108.9C7—C8—H8120.3
C4—C3—C2104.48 (14)C9—C8—H8120.3
C4—C3—H3A110.9C10—C9—C8120.04 (16)
C2—C3—H3A110.9C10—C9—H9120.0
C4—C3—H3B110.9C8—C9—H9120.0
C2—C3—H3B110.9C9—C10—C11119.09 (16)
H3A—C3—H3B108.9C9—C10—H10120.5
O2—C4—N1123.60 (15)C11—C10—H10120.5
O2—C4—C3128.46 (16)C10—C11—C6123.25 (16)
N1—C4—C3107.93 (14)C10—C11—Cl2117.94 (13)
N1—C5—C6112.74 (14)C6—C11—Cl2118.80 (13)
N1—C5—H5A109.0
C4—N1—C1—O1171.59 (15)N1—C5—C6—C1169.50 (19)
C5—N1—C1—O13.0 (2)C11—C6—C7—C81.7 (2)
C4—N1—C1—C28.48 (18)C5—C6—C7—C8179.66 (15)
C5—N1—C1—C2176.92 (14)C11—C6—C7—Cl1176.23 (12)
O1—C1—C2—C3165.92 (16)C5—C6—C7—Cl12.4 (2)
N1—C1—C2—C314.14 (18)C6—C7—C8—C90.7 (3)
C1—C2—C3—C414.26 (18)Cl1—C7—C8—C9177.37 (14)
C1—N1—C4—O2179.73 (16)C7—C8—C9—C100.6 (3)
C5—N1—C4—O25.1 (3)C8—C9—C10—C110.7 (3)
C1—N1—C4—C31.03 (18)C9—C10—C11—C60.5 (3)
C5—N1—C4—C3173.59 (14)C9—C10—C11—Cl2178.68 (13)
C2—C3—C4—O2171.54 (18)C7—C6—C11—C101.7 (2)
C2—C3—C4—N19.84 (18)C5—C6—C11—C10179.73 (16)
C1—N1—C5—C6123.48 (16)C7—C6—C11—Cl2177.52 (13)
C4—N1—C5—C662.46 (19)C5—C6—C11—Cl21.1 (2)
N1—C5—C6—C7111.97 (17)

Experimental details

Crystal data
Chemical formulaC11H9Cl2NO2
Mr258.09
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)4.8057 (5), 9.4388 (8), 23.936 (2)
V3)1085.74 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.923, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
7528, 2562, 2400
Rint0.029
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.09
No. of reflections2562
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27
Absolute structureFlack (1983), 1017 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

 

Acknowledgements

This work was supported by the Changsha Science and Technology Bureau (k0803061-11) and the Scientific Research Foundation of Hunan Provience (S2007F123).

References

First citationDuan, X. M., Han, J., Chen, L. G., Xu, Y. J. & Li, Y. (2005). Fine Chem. 22, 39–40, 52.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, J., Kaminski, K., Skrzynska, D. & Pichor, J. (2009). Eur. J. Med. Chem. 44, 2224–2233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds