organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-tert-Butyl­benz­yl)phthalimide

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 30 June 2009; accepted 30 June 2009; online 4 July 2009)

The mol­ecule of the title compound [systematic name: 2-(4-tert-butyl­benz­yl)isoindoline-1,3-dione], C19H19NO2, is V-shaped with a dihedral angle of 74.15 (7)° between the mean planes of the phthalimide unit and the benzene ring. The methyl groups of the tert-butyl substituent are disordered over two sets of positions, with an occupancy ratio of 0.700 (4):0.300 (4). In the crystal, inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into centrosymmetric dimers. An additional weak C—H⋯O contact, together with weak C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.961 (2) Å] generate a three-dimensional network.

Related literature

For the synthesis, see: Xin et al. (2006[Xin, C.-W., Li, J.-S., Guo, Z.-X. & Chen, L.-G. (2006). Acta Cryst. E62, o1273-o1275.]). For related structures, see: Chen et al. (2006[Chen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, o4188-o4189.]); Lü et al. (2006[Lü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, o2965-o2966.]); Warzecha et al. (2006a[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367-o2368.],b[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o2367-o2368.],c[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450-o5452.]); Xin et al. (2006[Xin, C.-W., Li, J.-S., Guo, Z.-X. & Chen, L.-G. (2006). Acta Cryst. E62, o1273-o1275.]).For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO2

  • Mr = 293.35

  • Trigonal, [R \overline 3]

  • a = 37.576 (7) Å

  • c = 6.2970 (16) Å

  • V = 7700 (3) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.987

  • 13205 measured reflections

  • 3022 independent reflections

  • 1574 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.01

  • 3022 reflections

  • 232 parameters

  • 117 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.41 3.297 (3) 160
C9—H9B⋯O1ii 0.97 2.71 3.135 (3) 107
C5—H5ACg3iii 0.93 2.94 3.771 (4) 149
Symmetry codes: (i) [-x+{\script{5\over 3}}, -y+{\script{1\over 3}}, -z+{\script{7\over 3}}]; (ii) [-x+y+{\script{4\over 3}}, -x+{\script{2\over 3}}, z+{\script{2\over 3}}]; (iii) [-x+{\script{1\over 3}}, -y+{\script{2\over 3}}, -z+{\script{2\over 3}}]. Cg3 is the centroid of the C10–C15 benzene ring.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The molecular structure of (I) (Fig. 1) shows that the phthalimide ring system is almost planar, with the dihedral angle between the C2···C7 and N1/C1/C2/C7/C8 rings 1.26 (15) °. The molecule adopts a V-shape with a dihedral angle between the mean planes of the phthalimide group and the benzene ring of 74.12 (7) Å. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those observed in comparable structures (Chen et al., 2006; Lü et al., 2006; Warzecha et al., 2006a,b,c; Xin et al., 2006).

In the crystal structure, complementary intermolecular C6—H6a···O2 hydrogen bonds link molecules into dimers (Table 1, Fig. 2). Additional weak C8—H9B···O1 and C—H···π contacts together with π-π interactions between the six-membered phthalimide rings (centroid-centroid separation 3.961 (2) Å; 1/3 - x,2/3 - y,2/3 - z) generate an extensive three-dimensional network structure, Fig. 3.

Related literature top

For the synthesis, see: Xin et al. (2006). For related structures, see: Chen et al. (2006); Lü et al. (2006); Warzecha et al. (2006a,b,c); Xin et al. (2006). Cg3 is the centroid of the C10–C15 benzene ring. For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained by a literature method (Xin, et al., 2006). Colourless blocks of (I) were grown from an ethanol solution.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C). The three methyl groups of the tert-butyl group are disordered over two positions with an occupancy ratio of 0.700 (4):0.300 (4). Restraints were applied to the atomic displacement parameters and interatomic distances for these atoms. PLATON (Spek, 2009) reports a solvent accessible voids of total area 164.0 Å3 in the structure. However, the low residual electron density does not suggest additional solvent in the structure. This was confirmed using the SQUEEZE procedure (Spek, 2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radius. Only the major disorder component of the disordered methyl groups is shown.
[Figure 2] Fig. 2. Centrosymmetric dimers of (I) formed by C—H···O hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the c axis. Hydrogen bonds are drawn as dashed lines.
2-(4-tert-butylbenzyl)isoindoline-1,3-dione top
Crystal data top
C19H19NO2Dx = 1.139 Mg m3
Mr = 293.35Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2125 reflections
Hall symbol: -R 3θ = 2.9–20.3°
a = 37.576 (7) ŵ = 0.07 mm1
c = 6.2970 (16) ÅT = 294 K
V = 7700 (3) Å3Block, colourless
Z = 180.24 × 0.22 × 0.18 mm
F(000) = 2808
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4444
Tmin = 0.983, Tmax = 0.987k = 4440
13205 measured reflectionsl = 75
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.007
3022 reflectionsΔρmax = 0.20 e Å3
232 parametersΔρmin = 0.17 e Å3
117 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Crystal data top
C19H19NO2Z = 18
Mr = 293.35Mo Kα radiation
Trigonal, R3µ = 0.07 mm1
a = 37.576 (7) ÅT = 294 K
c = 6.2970 (16) Å0.24 × 0.22 × 0.18 mm
V = 7700 (3) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1574 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.987Rint = 0.060
13205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051117 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3022 reflectionsΔρmin = 0.17 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.74578 (6)0.07689 (6)0.8339 (3)0.0624 (6)
O10.71269 (6)0.06224 (6)0.5108 (3)0.0914 (7)
O20.78710 (6)0.11049 (6)1.1186 (3)0.0878 (6)
C10.73592 (7)0.08689 (8)0.6388 (4)0.0636 (7)
C20.75936 (7)0.13258 (7)0.6282 (4)0.0592 (6)
C30.76152 (8)0.15895 (9)0.4692 (4)0.0738 (8)
H3A0.74630.14930.34480.089*
C40.78736 (9)0.20036 (10)0.5043 (5)0.0857 (9)
H4A0.78970.21900.40030.103*
C50.80973 (9)0.21491 (9)0.6882 (5)0.0840 (9)
H5A0.82670.24310.70610.101*
C60.80741 (8)0.18844 (9)0.8472 (4)0.0742 (8)
H6A0.82250.19810.97200.089*
C70.78172 (7)0.14702 (8)0.8123 (4)0.0586 (6)
C80.77353 (8)0.11164 (8)0.9466 (4)0.0637 (7)
C90.73037 (8)0.03495 (8)0.9110 (4)0.0761 (8)
H9A0.70410.01670.84460.091*
H9B0.72610.03411.06320.091*
C100.76013 (7)0.02033 (7)0.8621 (4)0.0633 (7)
C110.76087 (8)0.00447 (8)0.6666 (5)0.0779 (8)
H11A0.74180.00170.56400.093*
C120.78922 (8)0.00735 (8)0.6194 (4)0.0769 (8)
H12A0.78870.01810.48570.092*
C130.81833 (8)0.00375 (7)0.7641 (4)0.0648 (7)
C140.81715 (9)0.01207 (8)0.9605 (4)0.0775 (8)
H14A0.83630.01511.06300.093*
C150.78852 (9)0.02358 (8)1.0095 (4)0.0755 (8)
H15A0.78850.03371.14430.091*
C160.84998 (8)0.01645 (8)0.7120 (4)0.0776 (8)
C170.85716 (17)0.01769 (19)0.4734 (6)0.1105 (16)0.700 (4)
H17A0.83170.03660.40560.166*0.700 (4)
H17B0.87690.02650.45080.166*0.700 (4)
H17C0.86740.00920.41410.166*0.700 (4)
C180.83567 (17)0.05907 (15)0.8010 (9)0.1127 (16)0.700 (4)
H18A0.80940.07820.74100.169*0.700 (4)
H18B0.83320.05860.95260.169*0.700 (4)
H18C0.85530.06740.76570.169*0.700 (4)
C190.89213 (15)0.01404 (19)0.8087 (9)0.1309 (19)0.700 (4)
H19A0.89080.01120.96050.196*0.700 (4)
H19B0.89920.04160.77150.196*0.700 (4)
H19C0.91260.00830.75440.196*0.700 (4)
C17'0.8277 (4)0.0580 (3)0.595 (2)0.125 (3)0.300 (4)
H17D0.80800.07860.68910.188*0.300 (4)
H17E0.84740.06570.55110.188*0.300 (4)
H17F0.81380.05560.47310.188*0.300 (4)
C18'0.8704 (4)0.0220 (4)0.9090 (15)0.106 (3)0.300 (4)
H18D0.85060.04560.98710.160*0.300 (4)
H18E0.88060.00200.99700.160*0.300 (4)
H18F0.89270.02600.86670.160*0.300 (4)
C19'0.8826 (3)0.0180 (3)0.578 (2)0.115 (3)0.300 (4)
H19D0.86980.02350.46040.172*0.300 (4)
H19E0.90150.01000.52490.172*0.300 (4)
H19F0.89720.04230.66280.172*0.300 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0547 (13)0.0568 (13)0.0710 (14)0.0243 (11)0.0037 (10)0.0023 (11)
O10.0771 (13)0.0802 (13)0.0980 (15)0.0252 (11)0.0323 (11)0.0139 (11)
O20.0980 (15)0.0980 (14)0.0664 (13)0.0482 (12)0.0134 (11)0.0046 (10)
C10.0501 (15)0.0666 (18)0.0722 (18)0.0279 (14)0.0057 (13)0.0020 (14)
C20.0509 (15)0.0649 (17)0.0670 (17)0.0330 (13)0.0004 (13)0.0011 (14)
C30.0691 (18)0.082 (2)0.0766 (19)0.0431 (17)0.0010 (14)0.0084 (16)
C40.078 (2)0.080 (2)0.105 (2)0.0436 (18)0.0076 (18)0.0199 (17)
C50.072 (2)0.0623 (18)0.116 (3)0.0321 (16)0.0029 (18)0.0002 (19)
C60.0673 (18)0.0686 (19)0.088 (2)0.0349 (15)0.0063 (14)0.0103 (16)
C70.0508 (15)0.0620 (17)0.0668 (17)0.0310 (13)0.0014 (12)0.0037 (13)
C80.0624 (16)0.0716 (18)0.0616 (17)0.0369 (15)0.0027 (13)0.0051 (15)
C90.0628 (17)0.0650 (17)0.092 (2)0.0255 (14)0.0088 (14)0.0128 (14)
C100.0587 (16)0.0505 (15)0.0716 (19)0.0204 (13)0.0006 (13)0.0080 (12)
C110.0663 (18)0.0742 (19)0.082 (2)0.0265 (15)0.0184 (14)0.0111 (15)
C120.077 (2)0.0720 (18)0.0724 (19)0.0298 (16)0.0104 (15)0.0166 (14)
C130.0677 (17)0.0519 (15)0.0676 (17)0.0244 (13)0.0006 (14)0.0029 (12)
C140.095 (2)0.087 (2)0.0638 (18)0.0552 (18)0.0137 (14)0.0018 (14)
C150.099 (2)0.0821 (19)0.0583 (17)0.0551 (18)0.0020 (15)0.0044 (13)
C160.0807 (18)0.0794 (17)0.0765 (17)0.0429 (15)0.0052 (13)0.0025 (14)
C170.120 (3)0.137 (3)0.092 (3)0.078 (3)0.021 (2)0.005 (2)
C180.131 (3)0.106 (3)0.130 (3)0.081 (3)0.026 (3)0.029 (3)
C190.096 (3)0.148 (4)0.144 (4)0.057 (3)0.003 (3)0.036 (3)
C17'0.124 (5)0.123 (5)0.132 (5)0.065 (4)0.006 (4)0.021 (4)
C18'0.112 (5)0.113 (5)0.113 (5)0.071 (4)0.004 (4)0.014 (4)
C19'0.098 (4)0.122 (5)0.118 (5)0.052 (4)0.021 (4)0.012 (4)
Geometric parameters (Å, º) top
N1—C81.391 (3)C14—C151.380 (3)
N1—C11.388 (3)C14—H14A0.9300
N1—C91.464 (3)C15—H15A0.9300
O1—C11.209 (3)C16—C19'1.520 (7)
O2—C81.207 (3)C16—C181.519 (4)
C1—C21.488 (3)C16—C18'1.526 (7)
C2—C71.374 (3)C16—C171.531 (4)
C2—C31.382 (3)C16—C17'1.539 (7)
C3—C41.379 (4)C16—C191.542 (5)
C3—H3A0.9300C17—H17A0.9600
C4—C51.374 (4)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.383 (4)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.378 (3)C18—H18C0.9600
C6—H6A0.9300C19—H19A0.9600
C7—C81.473 (3)C19—H19B0.9600
C9—C101.504 (3)C19—H19C0.9600
C9—H9A0.9700C17'—H17D0.9600
C9—H9B0.9700C17'—H17E0.9600
C10—C151.373 (3)C17'—H17F0.9600
C10—C111.374 (3)C18'—H18D0.9600
C11—C121.376 (4)C18'—H18E0.9600
C11—H11A0.9300C18'—H18F0.9600
C12—C131.377 (3)C19'—H19D0.9600
C12—H12A0.9300C19'—H19E0.9600
C13—C141.383 (3)C19'—H19F0.9600
C13—C161.522 (4)
C8—N1—C1111.9 (2)C18—C16—C18'59.5 (5)
C8—N1—C9123.3 (2)C19'—C16—C13106.1 (5)
C1—N1—C9124.7 (2)C18—C16—C13109.3 (3)
O1—C1—N1124.8 (2)C18'—C16—C13113.1 (5)
O1—C1—C2129.7 (2)C19'—C16—C1753.2 (5)
N1—C1—C2105.5 (2)C18—C16—C17107.8 (3)
C7—C2—C3121.5 (2)C18'—C16—C17133.2 (5)
C7—C2—C1108.1 (2)C13—C16—C17113.5 (3)
C3—C2—C1130.4 (2)C19'—C16—C17'113.4 (7)
C4—C3—C2116.7 (3)C18—C16—C17'51.7 (5)
C4—C3—H3A121.7C18'—C16—C17'107.7 (7)
C2—C3—H3A121.7C13—C16—C17'107.9 (5)
C5—C4—C3122.0 (3)C17—C16—C17'61.0 (5)
C5—C4—H4A119.0C19'—C16—C1959.7 (5)
C3—C4—H4A119.0C18—C16—C19109.2 (4)
C4—C5—C6121.2 (3)C18'—C16—C1951.8 (5)
C4—C5—H5A119.4C13—C16—C19110.8 (3)
C6—C5—H5A119.4C17—C16—C19106.2 (3)
C7—C6—C5116.9 (3)C17'—C16—C19141.1 (5)
C7—C6—H6A121.5C16—C17—H17A109.5
C5—C6—H6A121.5C16—C17—H17B109.5
C2—C7—C6121.7 (2)H17A—C17—H17B109.5
C2—C7—C8108.5 (2)C16—C17—H17C109.5
C6—C7—C8129.8 (2)H17A—C17—H17C109.5
O2—C8—N1123.8 (2)H17B—C17—H17C109.5
O2—C8—C7130.3 (2)C16—C18—H18A109.5
N1—C8—C7106.0 (2)C16—C18—H18B109.5
N1—C9—C10111.05 (19)H18A—C18—H18B109.5
N1—C9—H9A109.4C16—C18—H18C109.5
C10—C9—H9A109.4H18A—C18—H18C109.5
N1—C9—H9B109.4H18B—C18—H18C109.5
C10—C9—H9B109.4C16—C19—H19A109.5
H9A—C9—H9B108.0C16—C19—H19B109.5
C15—C10—C11117.5 (3)C16—C19—H19C109.5
C15—C10—C9121.1 (3)C16—C17'—H17D109.5
C11—C10—C9121.5 (2)C16—C17'—H17E109.5
C10—C11—C12121.3 (2)H17D—C17'—H17E109.5
C10—C11—H11A119.3C16—C17'—H17F109.5
C12—C11—H11A119.3H17D—C17'—H17F109.5
C11—C12—C13122.0 (3)H17E—C17'—H17F109.5
C11—C12—H12A119.0C16—C18'—H18D109.5
C13—C12—H12A119.0C16—C18'—H18E109.5
C12—C13—C14116.0 (3)H18D—C18'—H18E109.5
C12—C13—C16122.2 (2)C16—C18'—H18F109.5
C14—C13—C16121.7 (2)H18D—C18'—H18F109.5
C15—C14—C13122.2 (2)H18E—C18'—H18F109.5
C15—C14—H14A118.9C16—C19'—H19D109.5
C13—C14—H14A118.9C16—C19'—H19E109.5
C10—C15—C14120.9 (2)H19D—C19'—H19E109.5
C10—C15—H15A119.5C16—C19'—H19F109.5
C14—C15—H15A119.5H19D—C19'—H19F109.5
C19'—C16—C18144.5 (5)H19E—C19'—H19F109.5
C19'—C16—C18'108.8 (7)
C8—N1—C1—O1179.5 (2)C8—N1—C9—C1083.0 (3)
C9—N1—C1—O11.8 (4)C1—N1—C9—C1094.5 (3)
C8—N1—C1—C20.8 (3)N1—C9—C10—C1595.2 (3)
C9—N1—C1—C2178.57 (19)N1—C9—C10—C1182.7 (3)
O1—C1—C2—C7179.8 (3)C15—C10—C11—C120.6 (4)
N1—C1—C2—C70.5 (2)C9—C10—C11—C12177.4 (2)
O1—C1—C2—C31.3 (4)C10—C11—C12—C130.4 (4)
N1—C1—C2—C3179.1 (2)C11—C12—C13—C140.6 (4)
C7—C2—C3—C40.4 (4)C11—C12—C13—C16179.5 (2)
C1—C2—C3—C4178.0 (2)C12—C13—C14—C150.1 (4)
C2—C3—C4—C50.4 (4)C16—C13—C14—C15179.8 (2)
C3—C4—C5—C60.2 (4)C11—C10—C15—C141.3 (4)
C4—C5—C6—C70.0 (4)C9—C10—C15—C14176.7 (2)
C3—C2—C7—C60.1 (4)C13—C14—C15—C101.1 (4)
C1—C2—C7—C6178.5 (2)C12—C13—C16—C19'78.0 (6)
C3—C2—C7—C8178.8 (2)C14—C13—C16—C19'102.1 (6)
C1—C2—C7—C80.1 (2)C12—C13—C16—C1898.6 (4)
C5—C6—C7—C20.0 (4)C14—C13—C16—C1881.3 (4)
C5—C6—C7—C8178.3 (2)C12—C13—C16—C18'162.8 (6)
C1—N1—C8—O2178.6 (2)C14—C13—C16—C18'17.1 (7)
C9—N1—C8—O20.8 (4)C12—C13—C16—C1721.7 (4)
C1—N1—C8—C70.8 (3)C14—C13—C16—C17158.4 (3)
C9—N1—C8—C7178.6 (2)C12—C13—C16—C17'43.8 (7)
C2—C7—C8—O2179.0 (3)C14—C13—C16—C17'136.1 (6)
C6—C7—C8—O20.5 (4)C12—C13—C16—C19141.1 (4)
C2—C7—C8—N10.4 (2)C14—C13—C16—C1939.0 (4)
C6—C7—C8—N1178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.413.297 (3)160
C9—H9B···O1ii0.972.713.135 (3)107
C5—H5A···Cg3iii0.932.943.771 (4)149
Symmetry codes: (i) x+5/3, y+1/3, z+7/3; (ii) x+y+4/3, x+2/3, z+2/3; (iii) x+1/3, y+2/3, z+2/3.

Experimental details

Crystal data
Chemical formulaC19H19NO2
Mr293.35
Crystal system, space groupTrigonal, R3
Temperature (K)294
a, c (Å)37.576 (7), 6.2970 (16)
V3)7700 (3)
Z18
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13205, 3022, 1574
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.01
No. of reflections3022
No. of parameters232
No. of restraints117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.413.297 (3)159.6
C9—H9B···O1ii0.972.713.135 (3)107.2
C5—H5A···Cg3iii0.932.943.771 (4)149
Symmetry codes: (i) x+5/3, y+1/3, z+7/3; (ii) x+y+4/3, x+2/3, z+2/3; (iii) x+1/3, y+2/3, z+2/3.
 

Acknowledgements

This project was supported by the Changsha University of Science and Technology Talent Fund (Project No. 1004214)

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, o4188–o4189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, o2965–o2966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367–o2368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o2367–o2368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450–o5452.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXin, C.-W., Li, J.-S., Guo, Z.-X. & Chen, L.-G. (2006). Acta Cryst. E62, o1273–o1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds