organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­chloro-N-(4-fluoro­phen­yl)picolinamide

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bGuangxi Institute of Standards and Technology, Nanning 530022, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 7 June 2009; accepted 27 June 2009; online 4 July 2009)

In the title compound, C12H7Cl2FN2O, the dihedral angle between the phenyl and pyridine rings is 42.5 (2) Å and an intramolecular N—H⋯N hydrogen bond occurs. The crystal structure is stabilized by C—H⋯O, C—H⋯F and C—Cl short contacts.

Related literature

For the chemical and pharmacological properties of amides, see: Liu et al. (2005[Liu, W., Li, X. & Zhang, B. (2005). J. Org. Chem. 70, 295-297.]); Sladowska & Sieklucka-Dziuba (1999[Sladowska, H. & Sieklucka-Dziuba, M. (1999). Farmaco, 54, 773-779.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7Cl2FN2O

  • Mr = 285.10

  • Orthorhombic, P c a 21

  • a = 24.921 (2) Å

  • b = 4.3735 (6) Å

  • c = 11.1723 (14) Å

  • V = 1217.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.31 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.852

  • 5652 measured reflections

  • 1959 independent reflections

  • 1582 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.08

  • 1959 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 826 Friedel pairs

  • Flack parameter: −0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.17 2.606 (5) 111

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemical and pharmacological properties of acid amides have investigated extensively, owing to their chelating ability with metal ions and to their potentially beneficial chemical and biological activties (Liu et al.,2005; Sladowska et al., 1999). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of 3,6-dichloro-N-(4-fluorophenyl)picolinamide. The C=O bond length is 1.200 (5) Å, indicating that the molecule is in the keto form. In the crystal structure, the molecules are stabilized by intramolecular N—H···N hydrogen bonds and C—H···O, C—H···F, C—Cl short contact.(Table 1 and Fig 2)

Related literature top

For the chemical and pharmacological properties of acid amides, see: Liu et al. (2005); Sladowska & Sieklucka-Dziuba (1999).

Experimental top

A solution of 3,6-dichloropicolinoyl chloride(10 mmol) in 50 ml toluene was added to a solution of 4-fluorobenzenamine (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo(yield 90%). Elemental analysis calculated:C, 50.55; H, 2.47; N, 9.83%; found: C, 50.52; H, 2.49; N, 9.82%. Crystals were obtained by slow evaporation of a solution in methanol after one week.

Refinement top

H atoms were placed geometrically and refined using a riding model, with C—H=0.93 Å,N—H=0.86 Å, respectively, and Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonds as dashed lines
3,6-Dichloro-N-(4-fluorophenyl)picolinamide top
Crystal data top
C12H7Cl2FN2OF(000) = 576
Mr = 285.10Dx = 1.555 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1638 reflections
a = 24.921 (2) Åθ = 2.9–27.0°
b = 4.3735 (6) ŵ = 0.53 mm1
c = 11.1723 (14) ÅT = 298 K
V = 1217.7 (2) Å3Block, colorless
Z = 40.45 × 0.33 × 0.31 mm
Data collection top
Bruker SMART CCD
diffractometer
1959 independent reflections
Radiation source: fine-focus sealed tube1582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2926
Tmin = 0.796, Tmax = 0.852k = 55
5652 measured reflectionsl = 1311
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.2751P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.21 e Å3
1959 reflectionsΔρmin = 0.20 e Å3
163 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.064 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 826 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (12)
Crystal data top
C12H7Cl2FN2OV = 1217.7 (2) Å3
Mr = 285.10Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.921 (2) ŵ = 0.53 mm1
b = 4.3735 (6) ÅT = 298 K
c = 11.1723 (14) Å0.45 × 0.33 × 0.31 mm
Data collection top
Bruker SMART CCD
diffractometer
1959 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1582 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.852Rint = 0.066
5652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.20 e Å3
1959 reflectionsAbsolute structure: Flack (1983), 826 Friedel pairs
163 parametersAbsolute structure parameter: 0.04 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29548 (4)0.3691 (3)0.97142 (12)0.0657 (4)
Cl20.10409 (7)0.8942 (4)0.69084 (13)0.0830 (5)
N10.14698 (14)0.5722 (9)0.8609 (3)0.0479 (9)
N20.11700 (14)0.2081 (9)1.0330 (3)0.0468 (9)
H20.09850.28170.97470.056*
F10.00073 (16)0.4220 (10)1.3695 (4)0.1088 (14)
O10.20091 (13)0.1700 (12)1.1055 (4)0.0917 (17)
C10.17010 (17)0.2639 (11)1.0316 (4)0.0491 (11)
C20.18767 (17)0.4557 (11)0.9264 (4)0.0449 (11)
C30.24053 (16)0.5164 (10)0.8958 (4)0.0430 (10)
C40.2520 (2)0.7023 (11)0.7983 (4)0.0523 (11)
H40.28730.74390.77710.063*
C50.2098 (2)0.8244 (12)0.7333 (5)0.0566 (12)
H50.21570.95180.66800.068*
C60.15852 (18)0.7482 (11)0.7701 (4)0.0493 (11)
C70.08862 (17)0.0410 (10)1.1205 (4)0.0418 (10)
C80.1042 (2)0.0484 (13)1.2409 (5)0.0595 (13)
H80.13420.15851.26540.071*
C90.0732 (2)0.1150 (15)1.3226 (5)0.0756 (17)
H90.08290.11681.40300.091*
C100.0290 (2)0.2722 (14)1.2864 (6)0.0714 (16)
C110.0144 (2)0.2826 (13)1.1691 (6)0.0688 (15)
H110.01550.39471.14570.083*
C120.04429 (18)0.1262 (13)1.0851 (5)0.0559 (13)
H120.03460.13321.00480.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0458 (6)0.0924 (10)0.0588 (7)0.0066 (6)0.0025 (6)0.0119 (8)
Cl20.0762 (9)0.0970 (11)0.0756 (10)0.0019 (8)0.0244 (8)0.0324 (9)
N10.052 (2)0.050 (2)0.042 (2)0.0034 (18)0.0024 (18)0.0056 (19)
N20.0447 (19)0.055 (2)0.040 (2)0.0029 (17)0.0053 (16)0.0082 (18)
F10.110 (3)0.108 (3)0.108 (3)0.014 (2)0.051 (2)0.036 (2)
O10.048 (2)0.148 (5)0.079 (3)0.003 (2)0.0076 (18)0.068 (3)
C10.044 (2)0.055 (3)0.048 (3)0.003 (2)0.000 (2)0.007 (2)
C20.047 (2)0.055 (3)0.032 (2)0.005 (2)0.0023 (18)0.000 (2)
C30.049 (2)0.043 (2)0.037 (2)0.0003 (19)0.0002 (19)0.0018 (18)
C40.056 (3)0.058 (3)0.043 (3)0.007 (2)0.009 (2)0.001 (2)
C50.071 (3)0.057 (3)0.042 (3)0.008 (2)0.001 (2)0.011 (2)
C60.054 (3)0.052 (3)0.042 (3)0.003 (2)0.006 (2)0.001 (2)
C70.047 (2)0.037 (2)0.042 (3)0.0010 (19)0.009 (2)0.0005 (19)
C80.054 (3)0.073 (4)0.052 (3)0.004 (3)0.003 (2)0.005 (3)
C90.082 (4)0.096 (5)0.049 (3)0.008 (3)0.017 (3)0.018 (3)
C100.072 (4)0.065 (4)0.078 (4)0.004 (3)0.034 (3)0.017 (3)
C110.053 (3)0.062 (3)0.092 (5)0.010 (2)0.017 (3)0.001 (3)
C120.049 (3)0.062 (3)0.057 (3)0.007 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl1—C31.734 (4)C4—H40.9300
Cl2—C61.741 (5)C5—C61.383 (6)
N1—C61.305 (6)C5—H50.9300
N1—C21.351 (6)C7—C121.383 (7)
N2—C11.346 (5)C7—C81.400 (7)
N2—C71.411 (6)C8—C91.393 (7)
N2—H20.8600C8—H80.9300
F1—C101.356 (6)C9—C101.361 (9)
O1—C11.200 (5)C9—H90.9300
C1—C21.508 (6)C10—C111.360 (9)
C2—C31.387 (6)C11—C121.379 (8)
C3—C41.389 (6)C11—H110.9300
C4—C51.385 (7)C12—H120.9300
C6—N1—C2118.6 (4)N1—C6—Cl2116.1 (3)
C1—N2—C7126.5 (4)C5—C6—Cl2118.7 (4)
C1—N2—H2116.7C12—C7—C8120.6 (4)
C7—N2—H2116.7C12—C7—N2118.4 (4)
O1—C1—N2124.0 (4)C8—C7—N2120.9 (4)
O1—C1—C2122.7 (4)C9—C8—C7117.6 (5)
N2—C1—C2113.3 (4)C9—C8—H8121.2
N1—C2—C3120.5 (4)C7—C8—H8121.2
N1—C2—C1114.5 (4)C10—C9—C8120.9 (5)
C3—C2—C1125.1 (4)C10—C9—H9119.5
C2—C3—C4120.1 (4)C8—C9—H9119.5
C2—C3—Cl1124.0 (3)F1—C10—C11119.9 (6)
C4—C3—Cl1115.9 (3)F1—C10—C9118.9 (6)
C5—C4—C3118.7 (4)C11—C10—C9121.3 (5)
C5—C4—H4120.6C10—C11—C12119.7 (5)
C3—C4—H4120.6C10—C11—H11120.2
C6—C5—C4116.9 (5)C12—C11—H11120.2
C6—C5—H5121.6C11—C12—C7119.9 (5)
C4—C5—H5121.6C11—C12—H12120.0
N1—C6—C5125.2 (5)C7—C12—H12120.0
C7—N2—C1—O11.7 (8)C2—N1—C6—Cl2179.2 (3)
C7—N2—C1—C2178.8 (4)C4—C5—C6—N10.2 (8)
C6—N1—C2—C31.6 (7)C4—C5—C6—Cl2179.6 (4)
C6—N1—C2—C1178.1 (4)C1—N2—C7—C12147.3 (5)
O1—C1—C2—N1172.2 (5)C1—N2—C7—C833.9 (7)
N2—C1—C2—N18.3 (6)C12—C7—C8—C90.7 (8)
O1—C1—C2—C37.5 (8)N2—C7—C8—C9178.1 (5)
N2—C1—C2—C3172.0 (4)C7—C8—C9—C100.9 (9)
N1—C2—C3—C41.1 (7)C8—C9—C10—F1178.5 (5)
C1—C2—C3—C4178.5 (4)C8—C9—C10—C112.0 (10)
N1—C2—C3—Cl1178.1 (3)F1—C10—C11—C12179.1 (5)
C1—C2—C3—Cl12.3 (7)C9—C10—C11—C121.4 (9)
C2—C3—C4—C50.1 (7)C10—C11—C12—C70.2 (8)
Cl1—C3—C4—C5179.3 (4)C8—C7—C12—C111.3 (8)
C3—C4—C5—C60.7 (7)N2—C7—C12—C11177.5 (4)
C2—N1—C6—C50.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.172.606 (5)111

Experimental details

Crystal data
Chemical formulaC12H7Cl2FN2O
Mr285.10
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)24.921 (2), 4.3735 (6), 11.1723 (14)
V3)1217.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.45 × 0.33 × 0.31
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
5652, 1959, 1582
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.08
No. of reflections1959
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), 826 Friedel pairs
Absolute structure parameter0.04 (12)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.172.606 (5)111.4
 

Acknowledgements

The authors thank the Science Foundation of Hunan Institute of Engineering for support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, W., Li, X. & Zhang, B. (2005). J. Org. Chem. 70, 295–297.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSladowska, H. & Sieklucka-Dziuba, M. (1999). Farmaco, 54, 773–779.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds