organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

4-[(Z)-(2-Fur­yl)(2-naphthyl­amino)methyl­ene)]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, People's Republic of China
*Correspondence e-mail: lijinzhou20@163.com

(Received 26 June 2009; accepted 1 July 2009; online 11 July 2009)

The title compound, C25H19N3O2, crystallizes as discrete mol­ecules which are well ordered through one intra­molecular N—H⋯O hydrogen bond. Structural analysis indicates that the mol­ecules exist as the amine–one form.

Related literature

For 4-heterocyclic acyl­pyrazolones, see: Dong et al. (1983[Dong, X.-C., Liu, F.-C. & Zhao, Y.-L. (1983). Acta Chim. Sin. 41, 848-852.]). For 4-heterocyclic acyl­pyrazolones derivatives as NMR shift-reagents, see: Mehrotra et al. (1978[Mehrotra, R. C., Bohra, R. & Gaur, D. P. (1978). Metal β-diketonates and Allied Derivatives. New York: Academic Press.]). For their pharmacological and physiological activity, see: Li et al. (2000[Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233-236.]). For related structures, see: Uzoukwu et al.(1993[Uzoukwu, A. B., Al-Juaid, S. S., Hitchcock, P. B. & Smith, J. D. (1993). Polyhedron, 12, 2719-2724.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); Peng et al. (2004[Peng, B., Liu, G., Liu, L., Jia, D. & Yu, K. (2004). J. Mol. Struct. 692, 217-222.]); Chai et al. (2005[Chai, H., Liu, G. F., Liu, L. & Jia, D. Z. (2005). Chin. J. Struct. Chem. 24, 1091-1095.]); Lü et al. (2006[Lü, X. Q., Bao, F., Kang, B. S., Wu, Q., Liu, H. Q. & Zhu, F. M. (2006). J. Organomet. Chem. 691, 821-828.]); Arıcı et al. (1999[Arıcı, C., Tahir, M. N., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 1691-1692.]). For the synthesis, see: Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19N3O2

  • Mr = 393.43

  • Monoclinic, P 21 /n

  • a = 9.8484 (10) Å

  • b = 17.5071 (18) Å

  • c = 12.1549 (13) Å

  • β = 108.836 (2)°

  • V = 1983.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.44 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.983

  • 13952 measured reflections

  • 4755 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.05

  • 4755 reflections

  • 276 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.890 (17) 1.930 (17) 2.7030 (17) 144.3 (16)

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (HPMαFP), is a member of a family of 4-heterocyclic acylpyrazolones, first synthesized in 1983 (Dong et al., 1983). Such 4-heterocyclic acylpyrazolones derivatives was found to be useful as NMR shift-reagents (Mehrotra et al., 1978), and it is also important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities and physiological activities (Li et al., 2000). As part of this work, we synthesized the title compound (I) derived from HPMαFP, and its structure is reported here.

The molecular structure of (I) is shown in Fig. 1. The C(7)–O(1) distance is 1.248 (3)Å which is shorter than that for C–OH in some pyrazolone compounds 1.319 (5)Å (Uzoukwu et al., 1993) and 1.313 (2)Å (Holzer et al., 1999), whereas it is close to the distances for C=O in similar compounds: 1.256 (3)Å (Uzoukwu et al.,1993) and 1.254 (2) Å (Peng et al., 2004). The C(8)–C(11)(1.392 (8)Å) is shorter than the C–C (1.53 Å), but close to C–C in some correlative compounds,1.400 (4) Å (Chai et al., 2005). The C(11)–N(3) distances is 1.338 (8) Å, which is longer than the values of 1.292 Å (Peng et al., 2004) and 1.318 (3) Å (Lü et al., 2006) for C=N inpyrazolone compounds, but similar to that for C–N (1.339 Å) (Arıcı et al., 1999). So we conclude that the title compound exist in the keto-form in solid state. The N–H proton is strongly hydrogen bonded with the O(1) atom, the N(3)···O(1) distances is 2.7030 (2)Å and the angle of N(3)–H(3)···O(1) is 144.3 (16)°. Therefore, the crystal structure study shows that the compound exists in the amine-one form.

Related literature top

For 4-heterocyclic acylpyrazolones, see: Dong et al. (1983). For 4-heterocyclic acylpyrazolones derivatives as NMR shift-reagents, see: Mehrotra et al. (1978). For their pharmacological and physiological activity, see: Li et al. (2000). For related strectures, see: Uzoukwu et al.(1993); Holzer et al. (1999); Peng et al. (2004); Chai et al. (2005); Lü et al. (2006); Arıcı et al. (1999). For the synthesis, see: Jensen (1959). .

Experimental top

All reagents were obtained from commercial sources and used without further purification. HPMαFP was synthesized according to the method proposed by Jensen (1959). A mixture of a 10 ml HPMαFP (1 mmol, 0.2683 g) anhydrous ethanol solution and 10 mlα-naphthylamine (1 mmol, 0.1432 g) ethanol solution was refluxed for 4–5 h at 75–80°C, a deep-yellow product which was precipitated, filtered off and washed with anhydrous ethanol for several times, dried in air. The deep-yellow powder was recrystallized from ethanol and the single crystals were obtained at room temperature after 3 days.

Refinement top

The H atom bonded to N3 was located in a difference map and refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93 for phenyl, furyl and naphthyl0.96 for methyl H atoms,and refined as riding, with Uiso(H) = 1.2Ueq (C) for phenyl and naphthyl H, and 1.5eqU(C) for methyl H.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
4-[(Z)-(2-furyl)(2-naphthylamino)methylene)]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C25H19N3O2F(000) = 824.0
Mr = 393.43Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3130 reflections
a = 9.8484 (10) Åθ = 2.6–28.0°
b = 17.5071 (18) ŵ = 0.09 mm1
c = 12.1549 (13) ÅT = 295 K
β = 108.836 (2)°Block, yellow
V = 1983.5 (4) Å30.44 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4755 independent reflections
Radiation source: fine-focus sealed tube3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1212
Tmin = 0.959, Tmax = 0.983k = 2321
13952 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.05P)2 + 0.2364P]
where P = (Fo2 + 2Fc2)/3
4755 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H19N3O2V = 1983.5 (4) Å3
Mr = 393.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8484 (10) ŵ = 0.09 mm1
b = 17.5071 (18) ÅT = 295 K
c = 12.1549 (13) Å0.44 × 0.30 × 0.20 mm
β = 108.836 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4755 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
3166 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.983Rint = 0.026
13952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
4755 reflectionsΔρmin = 0.18 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31096 (12)0.99855 (6)0.59990 (9)0.0549 (3)
N20.45802 (13)0.85606 (7)0.46997 (10)0.0432 (3)
N10.34379 (12)0.90162 (7)0.47756 (10)0.0399 (3)
N30.55828 (15)1.02258 (7)0.77544 (11)0.0465 (3)
O20.75042 (12)0.85524 (6)0.83717 (10)0.0592 (3)
C10.20702 (15)0.89273 (8)0.39232 (12)0.0390 (3)
C110.61359 (16)0.96190 (8)0.73800 (12)0.0397 (3)
C70.38634 (16)0.94942 (8)0.57273 (12)0.0406 (3)
C160.59012 (16)1.05724 (9)0.88701 (13)0.0449 (4)
C90.56923 (16)0.87256 (8)0.56016 (12)0.0409 (3)
C80.53422 (15)0.92941 (8)0.63218 (12)0.0394 (3)
C120.75221 (16)0.93050 (8)0.80752 (12)0.0418 (3)
C60.19138 (17)0.84437 (9)0.29868 (13)0.0457 (4)
H60.27120.82030.28950.055*
C250.53169 (17)1.13195 (9)0.88745 (13)0.0469 (4)
C170.65935 (18)1.02042 (10)0.98919 (14)0.0535 (4)
H170.69680.97180.98810.064*
C20.08712 (17)0.92954 (9)0.40357 (14)0.0490 (4)
H20.09650.96280.46530.059*
C40.06237 (18)0.86776 (10)0.23023 (15)0.0564 (4)
H40.15250.85920.17630.068*
C100.71017 (17)0.83648 (10)0.57112 (15)0.0563 (4)
H10A0.70120.80600.50350.085*
H10B0.73930.80470.63910.085*
H10C0.78080.87560.57780.085*
C180.67368 (19)1.05648 (12)1.09619 (14)0.0628 (5)
H180.72461.03221.16530.075*
C240.46253 (18)1.17379 (10)0.78515 (15)0.0546 (4)
H240.45621.15300.71330.065*
C50.05709 (18)0.83200 (10)0.21910 (14)0.0534 (4)
H50.04710.79900.15700.064*
C30.04613 (18)0.91643 (10)0.32260 (15)0.0564 (4)
H30.12620.94090.33060.068*
C190.6143 (2)1.12593 (12)1.09975 (15)0.0645 (5)
H190.62151.14771.17120.077*
C130.88543 (18)0.95840 (10)0.85144 (14)0.0545 (4)
H130.91501.00810.84440.065*
C210.4782 (2)1.23835 (12)0.99697 (19)0.0748 (6)
H210.48191.26051.06750.090*
C200.54195 (19)1.16567 (10)0.99658 (15)0.0561 (4)
C150.8882 (2)0.83722 (11)0.90023 (15)0.0651 (5)
H150.91840.78930.93150.078*
C140.97269 (19)0.89690 (11)0.91091 (16)0.0624 (5)
H141.07090.89850.95000.075*
C230.4050 (2)1.24393 (11)0.78978 (18)0.0689 (5)
H230.36091.27060.72140.083*
C220.4119 (3)1.27615 (12)0.8966 (2)0.0804 (6)
H220.37081.32370.89880.096*
H3A0.4738 (19)1.0356 (10)0.7248 (15)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0514 (7)0.0583 (7)0.0513 (7)0.0136 (5)0.0115 (5)0.0159 (5)
N20.0433 (7)0.0436 (7)0.0423 (7)0.0067 (5)0.0134 (6)0.0054 (5)
N10.0391 (7)0.0411 (7)0.0383 (6)0.0041 (5)0.0110 (5)0.0056 (5)
N30.0498 (8)0.0483 (8)0.0369 (7)0.0048 (6)0.0076 (6)0.0075 (6)
O20.0605 (7)0.0436 (6)0.0581 (7)0.0067 (5)0.0022 (6)0.0069 (5)
C10.0409 (8)0.0386 (8)0.0364 (7)0.0015 (6)0.0110 (6)0.0031 (6)
C110.0443 (8)0.0376 (8)0.0382 (8)0.0023 (6)0.0146 (6)0.0001 (6)
C70.0455 (9)0.0397 (8)0.0366 (7)0.0017 (6)0.0133 (6)0.0019 (6)
C160.0444 (8)0.0530 (9)0.0387 (8)0.0093 (7)0.0152 (6)0.0092 (7)
C90.0433 (8)0.0401 (8)0.0386 (8)0.0031 (6)0.0121 (6)0.0018 (6)
C80.0418 (8)0.0387 (8)0.0374 (7)0.0027 (6)0.0121 (6)0.0009 (6)
C120.0489 (9)0.0360 (8)0.0382 (8)0.0027 (6)0.0109 (6)0.0002 (6)
C60.0474 (9)0.0473 (9)0.0405 (8)0.0051 (7)0.0117 (7)0.0017 (7)
C250.0466 (9)0.0519 (9)0.0459 (9)0.0101 (7)0.0203 (7)0.0131 (7)
C170.0506 (10)0.0646 (11)0.0444 (9)0.0058 (8)0.0143 (7)0.0030 (8)
C20.0461 (9)0.0552 (9)0.0449 (9)0.0058 (7)0.0135 (7)0.0019 (7)
C40.0436 (9)0.0660 (11)0.0511 (10)0.0024 (8)0.0034 (7)0.0071 (8)
C100.0495 (10)0.0643 (11)0.0533 (10)0.0137 (8)0.0139 (8)0.0075 (8)
C180.0556 (11)0.0919 (15)0.0382 (9)0.0157 (10)0.0110 (8)0.0029 (9)
C240.0626 (11)0.0551 (10)0.0510 (10)0.0013 (8)0.0254 (8)0.0096 (8)
C50.0580 (10)0.0540 (10)0.0406 (8)0.0018 (8)0.0055 (7)0.0039 (7)
C30.0446 (10)0.0681 (11)0.0546 (10)0.0086 (8)0.0131 (8)0.0036 (9)
C190.0683 (12)0.0818 (13)0.0472 (10)0.0234 (10)0.0239 (9)0.0240 (9)
C130.0486 (10)0.0526 (10)0.0580 (10)0.0104 (8)0.0114 (8)0.0019 (8)
C210.0903 (15)0.0718 (13)0.0745 (14)0.0120 (11)0.0437 (12)0.0355 (11)
C200.0601 (11)0.0620 (11)0.0517 (10)0.0186 (8)0.0260 (8)0.0205 (8)
C150.0667 (12)0.0540 (10)0.0559 (10)0.0097 (9)0.0062 (9)0.0075 (8)
C140.0471 (10)0.0720 (12)0.0595 (11)0.0019 (9)0.0053 (8)0.0021 (9)
C230.0805 (14)0.0602 (11)0.0721 (12)0.0112 (10)0.0333 (11)0.0028 (10)
C220.1020 (17)0.0592 (12)0.0900 (16)0.0080 (11)0.0449 (13)0.0201 (11)
Geometric parameters (Å, º) top
O1—C71.2483 (17)C2—H20.9300
N2—C91.3074 (18)C4—C31.377 (2)
N2—N11.4062 (16)C4—C51.377 (2)
N1—C71.3787 (18)C4—H40.9300
N1—C11.4181 (18)C10—H10A0.9600
N3—C111.3388 (19)C10—H10B0.9600
N3—C161.4251 (18)C10—H10C0.9600
N3—H3A0.890 (17)C18—C191.356 (3)
O2—C151.363 (2)C18—H180.9300
O2—C121.3677 (17)C24—C231.361 (2)
C1—C61.387 (2)C24—H240.9300
C1—C21.390 (2)C5—H50.9300
C11—C81.3928 (19)C3—H30.9300
C11—C121.461 (2)C19—C201.410 (3)
C7—C81.444 (2)C19—H190.9300
C16—C171.370 (2)C13—C141.421 (2)
C16—C251.430 (2)C13—H130.9300
C9—C81.439 (2)C21—C221.356 (3)
C9—C101.491 (2)C21—C201.420 (3)
C12—C131.339 (2)C21—H210.9300
C6—C51.380 (2)C15—C141.316 (3)
C6—H60.9300C15—H150.9300
C25—C241.414 (2)C14—H140.9300
C25—C201.425 (2)C23—C221.397 (3)
C17—C181.411 (2)C23—H230.9300
C17—H170.9300C22—H220.9300
C2—C31.382 (2)
C9—N2—N1106.92 (11)C5—C4—H4120.6
C7—N1—N2111.50 (11)C9—C10—H10A109.5
C7—N1—C1129.74 (12)C9—C10—H10B109.5
N2—N1—C1118.76 (11)H10A—C10—H10B109.5
C11—N3—C16132.27 (14)C9—C10—H10C109.5
C11—N3—H3A111.1 (11)H10A—C10—H10C109.5
C16—N3—H3A114.8 (11)H10B—C10—H10C109.5
C15—O2—C12106.02 (13)C19—C18—C17120.98 (17)
C6—C1—C2119.41 (14)C19—C18—H18119.5
C6—C1—N1119.62 (13)C17—C18—H18119.5
C2—C1—N1120.92 (13)C23—C24—C25121.31 (16)
N3—C11—C8117.99 (13)C23—C24—H24119.3
N3—C11—C12120.57 (13)C25—C24—H24119.3
C8—C11—C12121.43 (13)C4—C5—C6121.02 (16)
O1—C7—N1126.48 (13)C4—C5—H5119.5
O1—C7—C8128.64 (13)C6—C5—H5119.5
N1—C7—C8104.88 (12)C4—C3—C2121.14 (16)
C17—C16—N3123.69 (15)C4—C3—H3119.4
C17—C16—C25120.68 (14)C2—C3—H3119.4
N3—C16—C25115.34 (13)C18—C19—C20120.90 (16)
N2—C9—C8111.25 (13)C18—C19—H19119.6
N2—C9—C10119.01 (13)C20—C19—H19119.6
C8—C9—C10129.61 (13)C12—C13—C14106.28 (15)
C11—C8—C9132.15 (13)C12—C13—H13126.9
C11—C8—C7122.51 (13)C14—C13—H13126.9
C9—C8—C7105.33 (12)C22—C21—C20121.29 (17)
C13—C12—O2109.92 (13)C22—C21—H21119.4
C13—C12—C11134.89 (14)C20—C21—H21119.4
O2—C12—C11115.19 (13)C19—C20—C21122.45 (16)
C5—C6—C1119.89 (15)C19—C20—C25119.14 (17)
C5—C6—H6120.1C21—C20—C25118.41 (17)
C1—C6—H6120.1C14—C15—O2110.79 (15)
C24—C25—C20118.23 (15)C14—C15—H15124.6
C24—C25—C16123.42 (14)O2—C15—H15124.6
C20—C25—C16118.34 (15)C15—C14—C13106.99 (16)
C16—C17—C18119.84 (17)C15—C14—H14126.5
C16—C17—H17120.1C13—C14—H14126.5
C18—C17—H17120.1C24—C23—C22120.46 (19)
C3—C2—C1119.63 (15)C24—C23—H23119.8
C3—C2—H2120.2C22—C23—H23119.8
C1—C2—H2120.2C21—C22—C23120.26 (19)
C3—C4—C5118.90 (15)C21—C22—H22119.9
C3—C4—H4120.6C23—C22—H22119.9
C9—N2—N1—C72.05 (16)C2—C1—C6—C51.3 (2)
C9—N2—N1—C1177.32 (12)N1—C1—C6—C5176.20 (14)
C7—N1—C1—C6175.47 (14)C17—C16—C25—C24178.23 (15)
N2—N1—C1—C65.3 (2)N3—C16—C25—C247.8 (2)
C7—N1—C1—C27.0 (2)C17—C16—C25—C202.6 (2)
N2—N1—C1—C2172.21 (13)N3—C16—C25—C20171.36 (14)
C16—N3—C11—C8162.29 (15)N3—C16—C17—C18173.62 (14)
C16—N3—C11—C1216.9 (3)C25—C16—C17—C180.1 (2)
N2—N1—C7—O1176.89 (14)C6—C1—C2—C31.1 (2)
C1—N1—C7—O13.8 (3)N1—C1—C2—C3176.36 (14)
N2—N1—C7—C83.45 (15)C16—C17—C18—C192.9 (3)
C1—N1—C7—C8175.84 (13)C20—C25—C24—C231.0 (3)
C11—N3—C16—C1720.6 (3)C16—C25—C24—C23178.16 (17)
C11—N3—C16—C25165.61 (16)C3—C4—C5—C60.0 (3)
N1—N2—C9—C80.31 (17)C1—C6—C5—C40.8 (2)
N1—N2—C9—C10175.88 (13)C5—C4—C3—C20.2 (3)
N3—C11—C8—C9169.80 (15)C1—C2—C3—C40.4 (3)
C12—C11—C8—C911.0 (3)C17—C18—C19—C202.8 (3)
N3—C11—C8—C711.4 (2)O2—C12—C13—C140.73 (19)
C12—C11—C8—C7167.75 (14)C11—C12—C13—C14179.64 (17)
N2—C9—C8—C11176.57 (15)C18—C19—C20—C21179.81 (18)
C10—C9—C8—C117.8 (3)C18—C19—C20—C250.1 (3)
N2—C9—C8—C72.38 (17)C22—C21—C20—C19178.53 (19)
C10—C9—C8—C7173.29 (16)C22—C21—C20—C251.6 (3)
O1—C7—C8—C114.0 (2)C24—C25—C20—C19178.08 (15)
N1—C7—C8—C11175.66 (13)C16—C25—C20—C192.7 (2)
O1—C7—C8—C9176.93 (16)C24—C25—C20—C212.0 (2)
N1—C7—C8—C93.42 (15)C16—C25—C20—C21177.14 (16)
C15—O2—C12—C130.65 (19)C12—O2—C15—C140.3 (2)
C15—O2—C12—C11179.64 (14)O2—C15—C14—C130.1 (2)
N3—C11—C12—C1357.2 (3)C12—C13—C14—C150.5 (2)
C8—C11—C12—C13123.6 (2)C25—C24—C23—C220.6 (3)
N3—C11—C12—O2122.37 (15)C20—C21—C22—C230.0 (3)
C8—C11—C12—O256.76 (19)C24—C23—C22—C211.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.890 (17)1.930 (17)2.7030 (17)144.3 (16)

Experimental details

Crystal data
Chemical formulaC25H19N3O2
Mr393.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.8484 (10), 17.5071 (18), 12.1549 (13)
β (°) 108.836 (2)
V3)1983.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.959, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13952, 4755, 3166
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.05
No. of reflections4755
No. of parameters276
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.890 (17)1.930 (17)2.7030 (17)144.3 (16)
 

Acknowledgements

The authors gratefully acknowledge financial support from the Scientific Research Foundation of the Education Department of Heilongjiang Province (grant No. 11521061), the Special Foundation of Creative Talents in Science and Technology of Harbin City (No. 2006RFXXG019) and the Found­ation for Scientific and Technical Development of Harbin Normal University (No. 08XYG-12).

References

First citationArıcı, C., Tahir, M. N., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 1691–1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Liu, G. F., Liu, L. & Jia, D. Z. (2005). Chin. J. Struct. Chem. 24, 1091–1095.  CAS Google Scholar
First citationDong, X.-C., Liu, F.-C. & Zhao, Y.-L. (1983). Acta Chim. Sin. 41, 848–852.  CAS Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationLi, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.  Google Scholar
First citationLü, X. Q., Bao, F., Kang, B. S., Wu, Q., Liu, H. Q. & Zhu, F. M. (2006). J. Organomet. Chem. 691, 821–828.  Google Scholar
First citationMehrotra, R. C., Bohra, R. & Gaur, D. P. (1978). Metal β-diketonates and Allied Derivatives. New York: Academic Press.  Google Scholar
First citationPeng, B., Liu, G., Liu, L., Jia, D. & Yu, K. (2004). J. Mol. Struct. 692, 217–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUzoukwu, A. B., Al–Juaid, S. S., Hitchcock, P. B. & Smith, J. D. (1993). Polyhedron, 12, 2719–2724.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds