metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m962-m963

Tetra­aqua­bis­(3,5-di-4-pyridyl-1,2,4-triazolato-κN)nickel(II) dihydrate

aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: pass2009_good@126.com

(Received 28 June 2009; accepted 14 July 2009; online 22 July 2009)

The NiII atom in the title compound, [Ni(C12H8N5)2(H2O)4]·2H2O, lies on a center of inversion and is coordinated by the N atoms of two 3,5-di-4-pyridine-1,2,4-triazolate ligands and by four water O atoms in a slightly distorted octa­hedral geometry. The coordinated and uncoordinated water mol­ecules inter­act with the N-heterocycles through O—H⋯N and O—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular architecture.

Related literature

For magnetic studies of transition metal complexes with 1,2,4- triazole derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). For 3,5-di-4-pyridine-1,2,4-triazole, see: Zhang et al. (2005[Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2005). J. Am. Chem. Soc. 127, 5495-5506.], 2006[Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519-523.]). For the synthesis, see: Basu & Dutta (1964[Basu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562-3564.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N5)2(H2O)4]·2H2O

  • Mr = 611.27

  • Monoclinic, P 21 /c

  • a = 7.3390 (15) Å

  • b = 15.653 (3) Å

  • c = 11.829 (2) Å

  • β = 107.20 (3)°

  • V = 1298.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.43 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.722, Tmax = 0.848

  • 10883 measured reflections

  • 2344 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.078

  • S = 1.14

  • 2344 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (3) 2.03 (3) 2.818 (3) 160 (3)
O3—H3A⋯N4ii 0.85 (3) 2.09 (3) 2.939 (3) 172 (3)
O3—H3B⋯N5iii 0.86 (4) 1.94 (4) 2.789 (3) 173 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with 1,2,4-triazole derivatives as ligands are of great interest as they are the subject of magnetic studies (Haasnoot, 2000). The ligand 3,5-di(4-pyridine)-1,2,4-triazole is of special interest as it contains multi-dentate donor atoms and shows diverse coordination modes. Especially only a few examples about the coordinaiton chemistry of L are reported. Some unusual coordination modes of L also have been reported forming interesting supramolecular isomerism systems (Zhang et al., 2006).

In this work, we synthesized a new compound [Ni(L)2(H2O)4](H2O)2 (L = 3,5-di(4-pyridine)-1,2,4-triazolate anions), which is composed of one nickel(II) cation, two L ligand, four coordinated and two lattice water molecules. The nickel(II) cation is six-coordinated in the octahedral geometry. The equatorial site of nickel cation is occupied by four aqua molecules while the axial site is occupied by two nitrogen atoms of two mono-dentate L ligands. The mono-dentate coordination mode of L is different from previously reported di-, tri- or tetra-dentate coordination modes of L (Zhang et al., 2005; Zhang et al., 2006).

O3 acts as both a hydrogen bond donor and a hydrogen bond acceptor. Strong O—H···N and O—H···O hydrogen bonds generated from water molecules and nitrogen atoms of pyridine or triazole groups are also observed resulting in the three-dimensional supramolecular network.

Related literature top

For magnetic studies of transition metal complexes with 1,2,4- triazole derivatives, see: Haasnoot (2000). For 3,5-di-4-pyridine-1,2,4-triazole, see: Zhang et al. (2005, 2006). For the synthesis, see: Basu & Dutta (1964).

Experimental top

The ligand was prepared according to the previous literature (Basu & Dutta, (1964)). [Ni(L)2(H2O)4](H2O) (I) (L = 3,5- di(4-pyridine)-1,2,4-triazole) was prepared under the hydrothermal conditions. [Ni(ClO4)2].6H2O (0.2 mmol), L (0.2 mmol) and 18 ml water was added to a 25 ml reaction vessel. The reaction vessel was then sealed and subsequently placed in an oven for 140 h at 160°C well shaped green block crystals were obtained and washed with ethanol.

Refinement top

All H atoms were found on difference maps. The water H atoms were refined freely, giving an O–H = 0.82–0.86 Å. The remaining H atoms were placed in calculated positions, with C–H = 0.93 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
Tetraaquabis(3,5-di-4-pyridyl-1,2,4-triazolato-κN)nickel(II) dihydrate top
Crystal data top
[Ni(C12H8N5)2(H2O)4]·2H2OF(000) = 636
Mr = 611.27Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 467 reflections
a = 7.3390 (15) Åθ = 1.5–25.3°
b = 15.653 (3) ŵ = 0.81 mm1
c = 11.829 (2) ÅT = 293 K
β = 107.20 (3)°Block, green
V = 1298.1 (5) Å30.43 × 0.27 × 0.21 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2344 independent reflections
Radiation source: fine-focus sealed tube2131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.722, Tmax = 0.848k = 1818
10883 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0259P)2 + 1.0454P]
where P = (Fo2 + 2Fc2)/3
2344 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C12H8N5)2(H2O)4]·2H2OV = 1298.1 (5) Å3
Mr = 611.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3390 (15) ŵ = 0.81 mm1
b = 15.653 (3) ÅT = 293 K
c = 11.829 (2) Å0.43 × 0.27 × 0.21 mm
β = 107.20 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2344 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2131 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.848Rint = 0.034
10883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.26 e Å3
2344 reflectionsΔρmin = 0.34 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4927 (3)0.33129 (14)0.6238 (2)0.0265 (5)
H1C0.54020.36450.69140.032*
C20.4672 (3)0.24522 (14)0.6376 (2)0.0272 (5)
H2C0.49830.22160.71310.033*
C30.3951 (3)0.19348 (13)0.53900 (19)0.0218 (5)
C40.3570 (4)0.23293 (14)0.4292 (2)0.0287 (5)
H4A0.31170.20100.36030.034*
C50.3864 (4)0.31953 (14)0.4228 (2)0.0283 (5)
H5A0.35900.34460.34830.034*
C60.3545 (3)0.10302 (13)0.55253 (19)0.0217 (5)
C70.2505 (3)0.02231 (13)0.52360 (19)0.0224 (5)
C80.1688 (3)0.10334 (14)0.46845 (19)0.0232 (5)
C90.1536 (4)0.17397 (16)0.5368 (2)0.0370 (6)
H9A0.18920.16970.61890.044*
C100.0858 (4)0.24977 (16)0.4823 (2)0.0411 (7)
H10A0.07940.29620.53010.049*
C110.0428 (4)0.19348 (16)0.3005 (2)0.0359 (6)
H11A0.00420.19950.21860.043*
C120.1111 (4)0.11487 (15)0.3471 (2)0.0312 (6)
H12A0.11840.06990.29710.037*
H1A0.413 (5)0.550 (2)0.686 (3)0.051 (9)*
H2A0.149 (5)0.527 (2)0.358 (3)0.051 (10)*
H3A0.163 (5)0.426 (2)0.782 (3)0.054 (10)*
H1B0.283 (5)0.493 (2)0.633 (3)0.055 (10)*
H2B0.257 (4)0.5122 (18)0.292 (3)0.048 (9)*
H3B0.077 (5)0.372 (2)0.691 (3)0.062 (10)*
N10.4525 (3)0.36961 (11)0.51811 (16)0.0237 (4)
N20.3943 (3)0.06670 (12)0.65942 (16)0.0279 (5)
N30.3259 (3)0.01470 (12)0.64046 (17)0.0290 (5)
N40.2645 (3)0.04985 (11)0.46332 (16)0.0226 (4)
N50.0286 (3)0.26126 (13)0.3656 (2)0.0360 (5)
Ni10.50000.50000.50000.01983 (13)
O10.3476 (3)0.53202 (12)0.61834 (15)0.0275 (4)
O20.2507 (3)0.50476 (11)0.35989 (15)0.0287 (4)
O30.1179 (3)0.42339 (11)0.70636 (17)0.0314 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0368 (14)0.0208 (12)0.0204 (12)0.0048 (10)0.0062 (10)0.0025 (9)
C20.0390 (14)0.0215 (12)0.0197 (12)0.0036 (10)0.0066 (10)0.0023 (9)
C30.0249 (12)0.0178 (11)0.0234 (12)0.0009 (9)0.0083 (9)0.0001 (9)
C40.0434 (15)0.0199 (12)0.0204 (12)0.0063 (11)0.0057 (10)0.0029 (9)
C50.0416 (15)0.0216 (12)0.0199 (12)0.0021 (10)0.0062 (10)0.0026 (9)
C60.0269 (12)0.0174 (11)0.0209 (11)0.0006 (9)0.0073 (9)0.0001 (9)
C70.0281 (12)0.0162 (11)0.0224 (11)0.0009 (9)0.0068 (9)0.0005 (8)
C80.0239 (12)0.0188 (11)0.0254 (12)0.0003 (9)0.0051 (9)0.0010 (9)
C90.0588 (18)0.0260 (13)0.0251 (13)0.0116 (12)0.0108 (12)0.0001 (10)
C100.0624 (19)0.0225 (13)0.0392 (16)0.0129 (13)0.0161 (13)0.0020 (11)
C110.0424 (15)0.0314 (14)0.0280 (13)0.0042 (11)0.0014 (11)0.0060 (11)
C120.0400 (15)0.0221 (12)0.0269 (13)0.0029 (10)0.0031 (11)0.0039 (10)
N10.0310 (11)0.0168 (9)0.0223 (10)0.0024 (8)0.0067 (8)0.0006 (7)
N20.0413 (12)0.0175 (10)0.0232 (10)0.0064 (9)0.0070 (9)0.0002 (8)
N30.0429 (12)0.0189 (10)0.0232 (10)0.0071 (9)0.0067 (9)0.0009 (8)
N40.0281 (10)0.0161 (9)0.0222 (10)0.0016 (8)0.0053 (8)0.0011 (7)
N50.0408 (13)0.0244 (11)0.0416 (13)0.0077 (10)0.0102 (10)0.0075 (9)
Ni10.0263 (2)0.0140 (2)0.0186 (2)0.00180 (17)0.00564 (16)0.00025 (16)
O10.0322 (10)0.0267 (9)0.0246 (9)0.0036 (8)0.0101 (8)0.0021 (7)
O20.0288 (10)0.0329 (10)0.0228 (9)0.0044 (8)0.0054 (7)0.0001 (7)
O30.0420 (11)0.0222 (9)0.0288 (10)0.0034 (8)0.0088 (8)0.0015 (7)
Geometric parameters (Å, º) top
C1—N11.339 (3)C10—N51.331 (3)
C1—C21.377 (3)C10—H10A0.9300
C1—H1C0.9300C11—N51.333 (3)
C2—C31.390 (3)C11—C121.380 (3)
C2—H2C0.9300C11—H11A0.9300
C3—C41.389 (3)C12—H12A0.9300
C3—C61.465 (3)N1—Ni12.0921 (18)
C4—C51.378 (3)N2—N31.364 (3)
C4—H4A0.9300Ni1—O22.0753 (19)
C5—N11.341 (3)Ni1—O2i2.0753 (19)
C5—H5A0.9300Ni1—N1i2.0921 (18)
C6—N21.337 (3)Ni1—O12.0945 (17)
C6—N41.353 (3)Ni1—O1i2.0945 (17)
C7—N31.334 (3)O1—H1A0.85 (3)
C7—N41.356 (3)O1—H1B0.82 (3)
C7—C81.471 (3)O2—H2A0.82 (3)
C8—C121.384 (3)O2—H2B0.82 (3)
C8—C91.393 (3)O3—H3A0.85 (3)
C9—C101.372 (3)O3—H3B0.86 (4)
C9—H9A0.9300
N1—C1—C2123.3 (2)C11—C12—C8119.6 (2)
N1—C1—H1C118.3C11—C12—H12A120.2
C2—C1—H1C118.3C8—C12—H12A120.2
C1—C2—C3120.1 (2)C1—N1—C5116.65 (19)
C1—C2—H2C119.9C1—N1—Ni1122.37 (14)
C3—C2—H2C119.9C5—N1—Ni1120.94 (15)
C4—C3—C2116.5 (2)C6—N2—N3105.95 (17)
C4—C3—C6122.7 (2)C7—N3—N2105.88 (17)
C2—C3—C6120.7 (2)C6—N4—C7101.41 (18)
C5—C4—C3119.8 (2)C10—N5—C11115.9 (2)
C5—C4—H4A120.1O2—Ni1—O2i180.0
C3—C4—H4A120.1O2—Ni1—N1i90.99 (7)
N1—C5—C4123.5 (2)O2i—Ni1—N1i89.01 (7)
N1—C5—H5A118.2O2—Ni1—N189.01 (7)
C4—C5—H5A118.2O2i—Ni1—N190.99 (7)
N2—C6—N4113.30 (19)N1i—Ni1—N1180.0
N2—C6—C3121.29 (19)O2—Ni1—O190.36 (8)
N4—C6—C3125.27 (19)O2i—Ni1—O189.64 (8)
N3—C7—N4113.45 (19)N1i—Ni1—O188.45 (7)
N3—C7—C8121.77 (19)N1—Ni1—O191.55 (7)
N4—C7—C8124.7 (2)O2—Ni1—O1i89.64 (8)
C12—C8—C9116.5 (2)O2i—Ni1—O1i90.36 (8)
C12—C8—C7122.2 (2)N1i—Ni1—O1i91.55 (7)
C9—C8—C7121.3 (2)N1—Ni1—O1i88.45 (7)
C10—C9—C8119.6 (2)O1—Ni1—O1i180.0
C10—C9—H9A120.2Ni1—O1—H1A117 (2)
C8—C9—H9A120.2Ni1—O1—H1B115 (2)
N5—C10—C9124.3 (2)H1A—O1—H1B104 (3)
N5—C10—H10A117.8Ni1—O2—H2A128 (2)
C9—C10—H10A117.8Ni1—O2—H2B119 (2)
N5—C11—C12124.1 (2)H2A—O2—H2B103 (3)
N5—C11—H11A118.0H3A—O3—H3B106 (3)
C12—C11—H11A118.0
N1—C1—C2—C30.5 (4)C4—C5—N1—Ni1178.32 (19)
C1—C2—C3—C41.7 (3)N4—C6—N2—N30.5 (3)
C1—C2—C3—C6175.6 (2)C3—C6—N2—N3175.4 (2)
C2—C3—C4—C51.7 (4)N4—C7—N3—N20.2 (3)
C6—C3—C4—C5175.6 (2)C8—C7—N3—N2177.4 (2)
C3—C4—C5—N10.5 (4)C6—N2—N3—C70.4 (2)
C4—C3—C6—N2179.4 (2)N2—C6—N4—C70.4 (3)
C2—C3—C6—N23.4 (3)C3—C6—N4—C7175.3 (2)
C4—C3—C6—N45.2 (4)N3—C7—N4—C60.2 (3)
C2—C3—C6—N4172.1 (2)C8—C7—N4—C6177.6 (2)
N3—C7—C8—C12172.1 (2)C9—C10—N5—C111.0 (4)
N4—C7—C8—C125.1 (4)C12—C11—N5—C100.2 (4)
N3—C7—C8—C94.9 (4)C1—N1—Ni1—O2142.48 (19)
N4—C7—C8—C9177.8 (2)C5—N1—Ni1—O240.10 (19)
C12—C8—C9—C100.6 (4)C1—N1—Ni1—O2i37.52 (19)
C7—C8—C9—C10176.6 (2)C5—N1—Ni1—O2i139.90 (19)
C8—C9—C10—N51.2 (5)C1—N1—Ni1—N1i139 (100)
N5—C11—C12—C80.4 (4)C5—N1—Ni1—N1i39 (100)
C9—C8—C12—C110.2 (4)C1—N1—Ni1—O152.15 (19)
C7—C8—C12—C11177.3 (2)C5—N1—Ni1—O1130.43 (19)
C2—C1—N1—C50.7 (4)C1—N1—Ni1—O1i127.85 (19)
C2—C1—N1—Ni1178.26 (18)C5—N1—Ni1—O1i49.57 (19)
C4—C5—N1—C10.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.82 (3)2.03 (3)2.818 (3)160 (3)
O3—H3A···N4iii0.85 (3)2.09 (3)2.939 (3)172 (3)
O3—H3B···N5iv0.86 (4)1.94 (4)2.789 (3)173 (3)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N5)2(H2O)4]·2H2O
Mr611.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3390 (15), 15.653 (3), 11.829 (2)
β (°) 107.20 (3)
V3)1298.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.43 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.722, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
10883, 2344, 2131
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.14
No. of reflections2344
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (3)2.03 (3)2.818 (3)160 (3)
O3—H3A···N4ii0.85 (3)2.09 (3)2.939 (3)172 (3)
O3—H3B···N5iii0.86 (4)1.94 (4)2.789 (3)173 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1.
 

References

First citationBasu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562–3564.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2005). J. Am. Chem. Soc. 127, 5495–5506.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519–523.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m962-m963
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds