metal-organic compounds
Tetraaquabis(3,5-di-4-pyridyl-1,2,4-triazolato-κN)nickel(II) dihydrate
aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: pass2009_good@126.com
The NiII atom in the title compound, [Ni(C12H8N5)2(H2O)4]·2H2O, lies on a center of inversion and is coordinated by the N atoms of two 3,5-di-4-pyridine-1,2,4-triazolate ligands and by four water O atoms in a slightly distorted octahedral geometry. The coordinated and uncoordinated water molecules interact with the N-heterocycles through O—H⋯N and O—H⋯O hydrogen bonds, generating a three-dimensional supramolecular architecture.
Related literature
For magnetic studies of transition metal complexes with 1,2,4- triazole derivatives, see: Haasnoot (2000). For 3,5-di-4-pyridine-1,2,4-triazole, see: Zhang et al. (2005, 2006). For the synthesis, see: Basu & Dutta (1964).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809027688/hg2531sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027688/hg2531Isup2.hkl
The ligand was prepared according to the previous literature (Basu & Dutta, (1964)). [Ni(L)2(H2O)4](H2O) (I) (L = 3,5- di(4-pyridine)-1,2,4-triazole) was prepared under the hydrothermal conditions. [Ni(ClO4)2].6H2O (0.2 mmol), L (0.2 mmol) and 18 ml water was added to a 25 ml reaction vessel. The reaction vessel was then sealed and subsequently placed in an oven for 140 h at 160°C well shaped green block crystals were obtained and washed with ethanol.
All H atoms were found on difference maps. The water H atoms were refined freely, giving an O–H = 0.82–0.86 Å. The remaining H atoms were placed in calculated positions, with C–H = 0.93 Å, and included in the final cycles of
using a riding model, with Uiso(H) = 1.2Ueq(C)Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level. |
[Ni(C12H8N5)2(H2O)4]·2H2O | F(000) = 636 |
Mr = 611.27 | Dx = 1.564 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 467 reflections |
a = 7.3390 (15) Å | θ = 1.5–25.3° |
b = 15.653 (3) Å | µ = 0.81 mm−1 |
c = 11.829 (2) Å | T = 293 K |
β = 107.20 (3)° | Block, green |
V = 1298.1 (5) Å3 | 0.43 × 0.27 × 0.21 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2344 independent reflections |
Radiation source: fine-focus sealed tube | 2131 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 25.2°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.722, Tmax = 0.848 | k = −18→18 |
10883 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0259P)2 + 1.0454P] where P = (Fo2 + 2Fc2)/3 |
2344 reflections | (Δ/σ)max < 0.001 |
211 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Ni(C12H8N5)2(H2O)4]·2H2O | V = 1298.1 (5) Å3 |
Mr = 611.27 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3390 (15) Å | µ = 0.81 mm−1 |
b = 15.653 (3) Å | T = 293 K |
c = 11.829 (2) Å | 0.43 × 0.27 × 0.21 mm |
β = 107.20 (3)° |
Bruker SMART CCD area-detector diffractometer | 2344 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2131 reflections with I > 2σ(I) |
Tmin = 0.722, Tmax = 0.848 | Rint = 0.034 |
10883 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.26 e Å−3 |
2344 reflections | Δρmin = −0.34 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4927 (3) | 0.33129 (14) | 0.6238 (2) | 0.0265 (5) | |
H1C | 0.5402 | 0.3645 | 0.6914 | 0.032* | |
C2 | 0.4672 (3) | 0.24522 (14) | 0.6376 (2) | 0.0272 (5) | |
H2C | 0.4983 | 0.2216 | 0.7131 | 0.033* | |
C3 | 0.3951 (3) | 0.19348 (13) | 0.53900 (19) | 0.0218 (5) | |
C4 | 0.3570 (4) | 0.23293 (14) | 0.4292 (2) | 0.0287 (5) | |
H4A | 0.3117 | 0.2010 | 0.3603 | 0.034* | |
C5 | 0.3864 (4) | 0.31953 (14) | 0.4228 (2) | 0.0283 (5) | |
H5A | 0.3590 | 0.3446 | 0.3483 | 0.034* | |
C6 | 0.3545 (3) | 0.10302 (13) | 0.55253 (19) | 0.0217 (5) | |
C7 | 0.2505 (3) | −0.02231 (13) | 0.52360 (19) | 0.0224 (5) | |
C8 | 0.1688 (3) | −0.10334 (14) | 0.46845 (19) | 0.0232 (5) | |
C9 | 0.1536 (4) | −0.17397 (16) | 0.5368 (2) | 0.0370 (6) | |
H9A | 0.1892 | −0.1697 | 0.6189 | 0.044* | |
C10 | 0.0858 (4) | −0.24977 (16) | 0.4823 (2) | 0.0411 (7) | |
H10A | 0.0794 | −0.2962 | 0.5301 | 0.049* | |
C11 | 0.0428 (4) | −0.19348 (16) | 0.3005 (2) | 0.0359 (6) | |
H11A | 0.0042 | −0.1995 | 0.2186 | 0.043* | |
C12 | 0.1111 (4) | −0.11487 (15) | 0.3471 (2) | 0.0312 (6) | |
H12A | 0.1184 | −0.0699 | 0.2971 | 0.037* | |
H1A | 0.413 (5) | 0.550 (2) | 0.686 (3) | 0.051 (9)* | |
H2A | 0.149 (5) | 0.527 (2) | 0.358 (3) | 0.051 (10)* | |
H3A | 0.163 (5) | 0.426 (2) | 0.782 (3) | 0.054 (10)* | |
H1B | 0.283 (5) | 0.493 (2) | 0.633 (3) | 0.055 (10)* | |
H2B | 0.257 (4) | 0.5122 (18) | 0.292 (3) | 0.048 (9)* | |
H3B | 0.077 (5) | 0.372 (2) | 0.691 (3) | 0.062 (10)* | |
N1 | 0.4525 (3) | 0.36961 (11) | 0.51811 (16) | 0.0237 (4) | |
N2 | 0.3943 (3) | 0.06670 (12) | 0.65942 (16) | 0.0279 (5) | |
N3 | 0.3259 (3) | −0.01470 (12) | 0.64046 (17) | 0.0290 (5) | |
N4 | 0.2645 (3) | 0.04985 (11) | 0.46332 (16) | 0.0226 (4) | |
N5 | 0.0286 (3) | −0.26126 (13) | 0.3656 (2) | 0.0360 (5) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01983 (13) | |
O1 | 0.3476 (3) | 0.53202 (12) | 0.61834 (15) | 0.0275 (4) | |
O2 | 0.2507 (3) | 0.50476 (11) | 0.35989 (15) | 0.0287 (4) | |
O3 | 0.1179 (3) | 0.42339 (11) | 0.70636 (17) | 0.0314 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0368 (14) | 0.0208 (12) | 0.0204 (12) | −0.0048 (10) | 0.0062 (10) | −0.0025 (9) |
C2 | 0.0390 (14) | 0.0215 (12) | 0.0197 (12) | −0.0036 (10) | 0.0066 (10) | 0.0023 (9) |
C3 | 0.0249 (12) | 0.0178 (11) | 0.0234 (12) | −0.0009 (9) | 0.0083 (9) | −0.0001 (9) |
C4 | 0.0434 (15) | 0.0199 (12) | 0.0204 (12) | −0.0063 (11) | 0.0057 (10) | −0.0029 (9) |
C5 | 0.0416 (15) | 0.0216 (12) | 0.0199 (12) | −0.0021 (10) | 0.0062 (10) | 0.0026 (9) |
C6 | 0.0269 (12) | 0.0174 (11) | 0.0209 (11) | −0.0006 (9) | 0.0073 (9) | 0.0001 (9) |
C7 | 0.0281 (12) | 0.0162 (11) | 0.0224 (11) | −0.0009 (9) | 0.0068 (9) | −0.0005 (8) |
C8 | 0.0239 (12) | 0.0188 (11) | 0.0254 (12) | −0.0003 (9) | 0.0051 (9) | −0.0010 (9) |
C9 | 0.0588 (18) | 0.0260 (13) | 0.0251 (13) | −0.0116 (12) | 0.0108 (12) | 0.0001 (10) |
C10 | 0.0624 (19) | 0.0225 (13) | 0.0392 (16) | −0.0129 (13) | 0.0161 (13) | 0.0020 (11) |
C11 | 0.0424 (15) | 0.0314 (14) | 0.0280 (13) | −0.0042 (11) | 0.0014 (11) | −0.0060 (11) |
C12 | 0.0400 (15) | 0.0221 (12) | 0.0269 (13) | −0.0029 (10) | 0.0031 (11) | 0.0039 (10) |
N1 | 0.0310 (11) | 0.0168 (9) | 0.0223 (10) | −0.0024 (8) | 0.0067 (8) | −0.0006 (7) |
N2 | 0.0413 (12) | 0.0175 (10) | 0.0232 (10) | −0.0064 (9) | 0.0070 (9) | 0.0002 (8) |
N3 | 0.0429 (12) | 0.0189 (10) | 0.0232 (10) | −0.0071 (9) | 0.0067 (9) | 0.0009 (8) |
N4 | 0.0281 (10) | 0.0161 (9) | 0.0222 (10) | −0.0016 (8) | 0.0053 (8) | 0.0011 (7) |
N5 | 0.0408 (13) | 0.0244 (11) | 0.0416 (13) | −0.0077 (10) | 0.0102 (10) | −0.0075 (9) |
Ni1 | 0.0263 (2) | 0.0140 (2) | 0.0186 (2) | −0.00180 (17) | 0.00564 (16) | −0.00025 (16) |
O1 | 0.0322 (10) | 0.0267 (9) | 0.0246 (9) | −0.0036 (8) | 0.0101 (8) | −0.0021 (7) |
O2 | 0.0288 (10) | 0.0329 (10) | 0.0228 (9) | 0.0044 (8) | 0.0054 (7) | −0.0001 (7) |
O3 | 0.0420 (11) | 0.0222 (9) | 0.0288 (10) | −0.0034 (8) | 0.0088 (8) | −0.0015 (7) |
C1—N1 | 1.339 (3) | C10—N5 | 1.331 (3) |
C1—C2 | 1.377 (3) | C10—H10A | 0.9300 |
C1—H1C | 0.9300 | C11—N5 | 1.333 (3) |
C2—C3 | 1.390 (3) | C11—C12 | 1.380 (3) |
C2—H2C | 0.9300 | C11—H11A | 0.9300 |
C3—C4 | 1.389 (3) | C12—H12A | 0.9300 |
C3—C6 | 1.465 (3) | N1—Ni1 | 2.0921 (18) |
C4—C5 | 1.378 (3) | N2—N3 | 1.364 (3) |
C4—H4A | 0.9300 | Ni1—O2 | 2.0753 (19) |
C5—N1 | 1.341 (3) | Ni1—O2i | 2.0753 (19) |
C5—H5A | 0.9300 | Ni1—N1i | 2.0921 (18) |
C6—N2 | 1.337 (3) | Ni1—O1 | 2.0945 (17) |
C6—N4 | 1.353 (3) | Ni1—O1i | 2.0945 (17) |
C7—N3 | 1.334 (3) | O1—H1A | 0.85 (3) |
C7—N4 | 1.356 (3) | O1—H1B | 0.82 (3) |
C7—C8 | 1.471 (3) | O2—H2A | 0.82 (3) |
C8—C12 | 1.384 (3) | O2—H2B | 0.82 (3) |
C8—C9 | 1.393 (3) | O3—H3A | 0.85 (3) |
C9—C10 | 1.372 (3) | O3—H3B | 0.86 (4) |
C9—H9A | 0.9300 | ||
N1—C1—C2 | 123.3 (2) | C11—C12—C8 | 119.6 (2) |
N1—C1—H1C | 118.3 | C11—C12—H12A | 120.2 |
C2—C1—H1C | 118.3 | C8—C12—H12A | 120.2 |
C1—C2—C3 | 120.1 (2) | C1—N1—C5 | 116.65 (19) |
C1—C2—H2C | 119.9 | C1—N1—Ni1 | 122.37 (14) |
C3—C2—H2C | 119.9 | C5—N1—Ni1 | 120.94 (15) |
C4—C3—C2 | 116.5 (2) | C6—N2—N3 | 105.95 (17) |
C4—C3—C6 | 122.7 (2) | C7—N3—N2 | 105.88 (17) |
C2—C3—C6 | 120.7 (2) | C6—N4—C7 | 101.41 (18) |
C5—C4—C3 | 119.8 (2) | C10—N5—C11 | 115.9 (2) |
C5—C4—H4A | 120.1 | O2—Ni1—O2i | 180.0 |
C3—C4—H4A | 120.1 | O2—Ni1—N1i | 90.99 (7) |
N1—C5—C4 | 123.5 (2) | O2i—Ni1—N1i | 89.01 (7) |
N1—C5—H5A | 118.2 | O2—Ni1—N1 | 89.01 (7) |
C4—C5—H5A | 118.2 | O2i—Ni1—N1 | 90.99 (7) |
N2—C6—N4 | 113.30 (19) | N1i—Ni1—N1 | 180.0 |
N2—C6—C3 | 121.29 (19) | O2—Ni1—O1 | 90.36 (8) |
N4—C6—C3 | 125.27 (19) | O2i—Ni1—O1 | 89.64 (8) |
N3—C7—N4 | 113.45 (19) | N1i—Ni1—O1 | 88.45 (7) |
N3—C7—C8 | 121.77 (19) | N1—Ni1—O1 | 91.55 (7) |
N4—C7—C8 | 124.7 (2) | O2—Ni1—O1i | 89.64 (8) |
C12—C8—C9 | 116.5 (2) | O2i—Ni1—O1i | 90.36 (8) |
C12—C8—C7 | 122.2 (2) | N1i—Ni1—O1i | 91.55 (7) |
C9—C8—C7 | 121.3 (2) | N1—Ni1—O1i | 88.45 (7) |
C10—C9—C8 | 119.6 (2) | O1—Ni1—O1i | 180.0 |
C10—C9—H9A | 120.2 | Ni1—O1—H1A | 117 (2) |
C8—C9—H9A | 120.2 | Ni1—O1—H1B | 115 (2) |
N5—C10—C9 | 124.3 (2) | H1A—O1—H1B | 104 (3) |
N5—C10—H10A | 117.8 | Ni1—O2—H2A | 128 (2) |
C9—C10—H10A | 117.8 | Ni1—O2—H2B | 119 (2) |
N5—C11—C12 | 124.1 (2) | H2A—O2—H2B | 103 (3) |
N5—C11—H11A | 118.0 | H3A—O3—H3B | 106 (3) |
C12—C11—H11A | 118.0 | ||
N1—C1—C2—C3 | −0.5 (4) | C4—C5—N1—Ni1 | 178.32 (19) |
C1—C2—C3—C4 | 1.7 (3) | N4—C6—N2—N3 | −0.5 (3) |
C1—C2—C3—C6 | −175.6 (2) | C3—C6—N2—N3 | 175.4 (2) |
C2—C3—C4—C5 | −1.7 (4) | N4—C7—N3—N2 | −0.2 (3) |
C6—C3—C4—C5 | 175.6 (2) | C8—C7—N3—N2 | 177.4 (2) |
C3—C4—C5—N1 | 0.5 (4) | C6—N2—N3—C7 | 0.4 (2) |
C4—C3—C6—N2 | 179.4 (2) | N2—C6—N4—C7 | 0.4 (3) |
C2—C3—C6—N2 | −3.4 (3) | C3—C6—N4—C7 | −175.3 (2) |
C4—C3—C6—N4 | −5.2 (4) | N3—C7—N4—C6 | −0.2 (3) |
C2—C3—C6—N4 | 172.1 (2) | C8—C7—N4—C6 | −177.6 (2) |
N3—C7—C8—C12 | −172.1 (2) | C9—C10—N5—C11 | 1.0 (4) |
N4—C7—C8—C12 | 5.1 (4) | C12—C11—N5—C10 | −0.2 (4) |
N3—C7—C8—C9 | 4.9 (4) | C1—N1—Ni1—O2 | −142.48 (19) |
N4—C7—C8—C9 | −177.8 (2) | C5—N1—Ni1—O2 | 40.10 (19) |
C12—C8—C9—C10 | 0.6 (4) | C1—N1—Ni1—O2i | 37.52 (19) |
C7—C8—C9—C10 | −176.6 (2) | C5—N1—Ni1—O2i | −139.90 (19) |
C8—C9—C10—N5 | −1.2 (5) | C1—N1—Ni1—N1i | 139 (100) |
N5—C11—C12—C8 | −0.4 (4) | C5—N1—Ni1—N1i | −39 (100) |
C9—C8—C12—C11 | 0.2 (4) | C1—N1—Ni1—O1 | −52.15 (19) |
C7—C8—C12—C11 | 177.3 (2) | C5—N1—Ni1—O1 | 130.43 (19) |
C2—C1—N1—C5 | −0.7 (4) | C1—N1—Ni1—O1i | 127.85 (19) |
C2—C1—N1—Ni1 | −178.26 (18) | C5—N1—Ni1—O1i | −49.57 (19) |
C4—C5—N1—C1 | 0.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3ii | 0.82 (3) | 2.03 (3) | 2.818 (3) | 160 (3) |
O3—H3A···N4iii | 0.85 (3) | 2.09 (3) | 2.939 (3) | 172 (3) |
O3—H3B···N5iv | 0.86 (4) | 1.94 (4) | 2.789 (3) | 173 (3) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H8N5)2(H2O)4]·2H2O |
Mr | 611.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.3390 (15), 15.653 (3), 11.829 (2) |
β (°) | 107.20 (3) |
V (Å3) | 1298.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.43 × 0.27 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.722, 0.848 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10883, 2344, 2131 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.078, 1.14 |
No. of reflections | 2344 |
No. of parameters | 211 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.34 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.82 (3) | 2.03 (3) | 2.818 (3) | 160 (3) |
O3—H3A···N4ii | 0.85 (3) | 2.09 (3) | 2.939 (3) | 172 (3) |
O3—H3B···N5iii | 0.86 (4) | 1.94 (4) | 2.789 (3) | 173 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x, −y, −z+1. |
References
Basu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562–3564. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2005). J. Am. Chem. Soc. 127, 5495–5506. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519–523. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with 1,2,4-triazole derivatives as ligands are of great interest as they are the subject of magnetic studies (Haasnoot, 2000). The ligand 3,5-di(4-pyridine)-1,2,4-triazole is of special interest as it contains multi-dentate donor atoms and shows diverse coordination modes. Especially only a few examples about the coordinaiton chemistry of L are reported. Some unusual coordination modes of L also have been reported forming interesting supramolecular isomerism systems (Zhang et al., 2006).
In this work, we synthesized a new compound [Ni(L)2(H2O)4](H2O)2 (L = 3,5-di(4-pyridine)-1,2,4-triazolate anions), which is composed of one nickel(II) cation, two L ligand, four coordinated and two lattice water molecules. The nickel(II) cation is six-coordinated in the octahedral geometry. The equatorial site of nickel cation is occupied by four aqua molecules while the axial site is occupied by two nitrogen atoms of two mono-dentate L ligands. The mono-dentate coordination mode of L is different from previously reported di-, tri- or tetra-dentate coordination modes of L (Zhang et al., 2005; Zhang et al., 2006).
O3 acts as both a hydrogen bond donor and a hydrogen bond acceptor. Strong O—H···N and O—H···O hydrogen bonds generated from water molecules and nitrogen atoms of pyridine or triazole groups are also observed resulting in the three-dimensional supramolecular network.