organic compounds
2,5-Dimethylanilinium nitrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: wajda_sta@yahoo.fr
In the title salt, C8H12N+·NO3−, all non-H atoms of the cation lie on mirror planes. The nitrate counteranion has m symmetry and acts as a hydrogen-bond acceptor of N—H⋯O hydrogen bonds, connecting the cations and anions into layers running parallel to the ab plane.
Related literature
Inorganic–organic hybrid materials display a great variety of structural topologies, see: Xiao et al. (2005). For comparative geometrical data in structures containing the same organic groups, see: Smirani & Rzaigui (2009); Souissi et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809027718/hg2534sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027718/hg2534Isup2.hkl
An ethanolic solution of 2,5-dimethylaniline (10 mmol, in 5 ml) was added drop wise to a magnetically stirred aqueous solution of nitric acid HNO3 (1 M, 10 ml) in equimolar ratio. The so-obtained solution is then filtered to eliminate the white precipitated formed and then stirred for 1 h. After stirring, the reaction mixture was kept at room temperature until apparition of transparent single crystals of 2,5-dimethylanilinium nitrate.
The nitrogen H atoms were located in a difference map and freely refined. The other H atoms were positioned geometrically(C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq (C) or 1.5 Ueq(methyl C).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C8H12N+·NO3− | F(000) = 392 |
Mr = 184.20 | Dx = 1.329 Mg m−3 |
Orthorhombic, Pmcn | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2n 2a | Cell parameters from 25 reflections |
a = 6.762 (3) Å | θ = 9.0–10.5° |
b = 7.942 (3) Å | µ = 0.06 mm−1 |
c = 17.137 (5) Å | T = 293 K |
V = 920.4 (6) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.45 × 0.40 mm |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.056 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.2° |
Graphite monochromator | h = −8→11 |
Non–profiled ω scans | k = 0→13 |
4249 measured reflections | l = 0→28 |
2365 independent reflections | 2 standard reflections every 120 min |
822 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max < 0.001 |
2365 reflections | Δρmax = 0.20 e Å−3 |
86 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.166 (13) |
C8H12N+·NO3− | V = 920.4 (6) Å3 |
Mr = 184.20 | Z = 4 |
Orthorhombic, Pmcn | Ag Kα radiation, λ = 0.56085 Å |
a = 6.762 (3) Å | µ = 0.06 mm−1 |
b = 7.942 (3) Å | T = 293 K |
c = 17.137 (5) Å | 0.50 × 0.45 × 0.40 mm |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.056 |
4249 measured reflections | 2 standard reflections every 120 min |
2365 independent reflections | intensity decay: 5% |
822 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.20 e Å−3 |
2365 reflections | Δρmin = −0.21 e Å−3 |
86 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
H1A | 0.135 (3) | 0.372 (3) | 0.2106 (10) | 0.086 (7)* | |
H2A | 0.2500 | 0.209 (4) | 0.2009 (14) | 0.068 (8)* | |
C6 | 0.2500 | 0.4899 (2) | 0.07043 (11) | 0.0405 (5) | |
N1 | 0.2500 | 0.3185 (3) | 0.18968 (10) | 0.0427 (4) | |
C1 | 0.2500 | 0.3315 (2) | 0.10432 (10) | 0.0349 (4) | |
C2 | 0.2500 | 0.1853 (3) | 0.06089 (12) | 0.0432 (5) | |
H2 | 0.2500 | 0.0817 | 0.0862 | 0.052* | |
C5 | 0.2500 | 0.4935 (3) | −0.01074 (13) | 0.0507 (6) | |
H5 | 0.2500 | 0.5971 | −0.0361 | 0.061* | |
C3 | 0.2500 | 0.1907 (3) | −0.01996 (12) | 0.0452 (5) | |
C4 | 0.2500 | 0.3481 (3) | −0.05467 (12) | 0.0499 (6) | |
H4 | 0.2500 | 0.3559 | −0.1088 | 0.060* | |
C7 | 0.2500 | 0.6490 (3) | 0.11749 (13) | 0.0550 (6) | |
H7A | 0.3818 | 0.6722 | 0.1353 | 0.083* | 0.50 |
H7B | 0.1638 | 0.6361 | 0.1616 | 0.083* | 0.50 |
H7C | 0.2044 | 0.7406 | 0.0857 | 0.083* | 0.50 |
C8 | 0.2500 | 0.0315 (3) | −0.06851 (15) | 0.0685 (7) | |
H8A | 0.1164 | 0.0016 | −0.0814 | 0.103* | 0.50 |
H8B | 0.3098 | −0.0582 | −0.0393 | 0.103* | 0.50 |
H8C | 0.3238 | 0.0501 | −0.1156 | 0.103* | 0.50 |
N2 | 0.2500 | 0.9146 (2) | 0.26822 (9) | 0.0425 (4) | |
O1 | 0.09203 (15) | 0.98204 (16) | 0.24632 (7) | 0.0604 (4) | |
O2 | 0.2500 | 0.7900 (2) | 0.30947 (10) | 0.0672 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C6 | 0.0373 (10) | 0.0419 (11) | 0.0424 (10) | 0.000 | 0.000 | 0.0018 (9) |
N1 | 0.0501 (10) | 0.0419 (11) | 0.0360 (9) | 0.000 | 0.000 | 0.0017 (8) |
C1 | 0.0330 (9) | 0.0399 (10) | 0.0318 (9) | 0.000 | 0.000 | 0.0012 (8) |
C2 | 0.0458 (11) | 0.0363 (11) | 0.0476 (11) | 0.000 | 0.000 | 0.0020 (9) |
C5 | 0.0620 (15) | 0.0427 (11) | 0.0474 (12) | 0.000 | 0.000 | 0.0089 (10) |
C3 | 0.0411 (11) | 0.0505 (13) | 0.0440 (11) | 0.000 | 0.000 | −0.0092 (10) |
C4 | 0.0506 (12) | 0.0630 (15) | 0.0361 (10) | 0.000 | 0.000 | 0.0019 (10) |
C7 | 0.0642 (14) | 0.0425 (12) | 0.0584 (13) | 0.000 | 0.000 | −0.0034 (11) |
C8 | 0.0796 (19) | 0.0673 (16) | 0.0586 (14) | 0.000 | 0.000 | −0.0229 (13) |
N2 | 0.0476 (10) | 0.0425 (10) | 0.0374 (9) | 0.000 | 0.000 | −0.0025 (8) |
O1 | 0.0435 (6) | 0.0667 (9) | 0.0708 (7) | 0.0079 (5) | 0.0007 (6) | 0.0138 (6) |
O2 | 0.0868 (13) | 0.0550 (10) | 0.0598 (10) | 0.000 | 0.000 | 0.0189 (9) |
C6—C1 | 1.385 (3) | C3—C8 | 1.514 (3) |
C6—C5 | 1.391 (3) | C4—H4 | 0.9300 |
C6—C7 | 1.499 (3) | C7—H7A | 0.9600 |
N1—C1 | 1.467 (2) | C7—H7B | 0.9600 |
N1—H1A | 0.95 (2) | C7—H7C | 0.9600 |
N1—H2A | 0.89 (3) | C8—H8A | 0.9600 |
C1—C2 | 1.379 (3) | C8—H8B | 0.9600 |
C2—C3 | 1.386 (3) | C8—H8C | 0.9600 |
C2—H2 | 0.9300 | N2—O2 | 1.216 (2) |
C5—C4 | 1.379 (3) | N2—O1 | 1.2525 (14) |
C5—H5 | 0.9300 | N2—O1i | 1.2525 (14) |
C3—C4 | 1.384 (3) | ||
C1—C6—C5 | 115.98 (18) | C5—C4—C3 | 121.46 (19) |
C1—C6—C7 | 122.67 (18) | C5—C4—H4 | 119.3 |
C5—C6—C7 | 121.35 (19) | C3—C4—H4 | 119.3 |
C1—N1—H1A | 110.2 (11) | C6—C7—H7A | 109.5 |
C1—N1—H2A | 106.6 (16) | C6—C7—H7B | 109.5 |
H1A—N1—H2A | 110.6 (14) | H7A—C7—H7B | 109.5 |
C2—C1—C6 | 122.56 (17) | C6—C7—H7C | 109.5 |
C2—C1—N1 | 118.60 (18) | H7A—C7—H7C | 109.5 |
C6—C1—N1 | 118.84 (17) | H7B—C7—H7C | 109.5 |
C1—C2—C3 | 120.9 (2) | C3—C8—H8A | 109.5 |
C1—C2—H2 | 119.6 | C3—C8—H8B | 109.5 |
C3—C2—H2 | 119.6 | H8A—C8—H8B | 109.5 |
C4—C5—C6 | 121.9 (2) | C3—C8—H8C | 109.5 |
C4—C5—H5 | 119.1 | H8A—C8—H8C | 109.5 |
C6—C5—H5 | 119.1 | H8B—C8—H8C | 109.5 |
C4—C3—C2 | 117.2 (2) | O2—N2—O1 | 121.48 (9) |
C4—C3—C8 | 121.2 (2) | O2—N2—O1i | 121.48 (9) |
C2—C3—C8 | 121.6 (2) | O1—N2—O1i | 117.04 (17) |
C5—C6—C1—C2 | 0.0 | C7—C6—C5—C4 | 180.0 |
C7—C6—C1—C2 | 180.0 | C1—C2—C3—C4 | 0.0 |
C5—C6—C1—N1 | 180.0 | C1—C2—C3—C8 | 180.0 |
C7—C6—C1—N1 | 0.0 | C6—C5—C4—C3 | 0.0 |
C6—C1—C2—C3 | 0.0 | C2—C3—C4—C5 | 0.0 |
N1—C1—C2—C3 | 180.0 | C8—C3—C4—C5 | 180.0 |
C1—C6—C5—C4 | 0.0 |
Symmetry code: (i) −x+1/2, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.95 (2) | 1.92 (3) | 2.870 (2) | 179 (3) |
N1—H2A···O1iii | 0.89 (3) | 2.24 (3) | 3.037 (3) | 150 (1) |
Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) −x+1/2, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C8H12N+·NO3− |
Mr | 184.20 |
Crystal system, space group | Orthorhombic, Pmcn |
Temperature (K) | 293 |
a, b, c (Å) | 6.762 (3), 7.942 (3), 17.137 (5) |
V (Å3) | 920.4 (6) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.50 × 0.45 × 0.40 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4249, 2365, 822 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.156, 0.92 |
No. of reflections | 2365 |
No. of parameters | 86 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.21 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.95 (2) | 1.92 (3) | 2.870 (2) | 179 (3) |
N1—H2A···O1ii | 0.89 (3) | 2.24 (3) | 3.037 (3) | 149.7 (8) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y−1, z. |
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83. Web of Science CSD CrossRef IUCr Journals Google Scholar
Souissi, S., Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, m442. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct. 738, 217–225. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The combination of organic molecules and inorganic materials was the starting point for the developpement of new hybrid compounds with appropriate physical and chemical properties. These materials have a great interest due to their enormous variety of intriguing structural topologies (Xiao et al., 2005). In order to enrich the varieties in such kinds of hybrid materials and to investigate the influence of hydrogen bonds on the structural features, we report the crystal structure of 2,5 dimethylanilinium nitrate (I).
The title compound crystallizes in the space group Pcmn. Only the non-hydrogen atoms of the cation lie on the mirror planes. As shown in Fig. 1, the asymmetric unit of the crystal structure of this salt is built of half nitrate anion and half 2,5-dimethylanilinium cation. A projection of the structure along the a axis shows that the nitrate anions establish with the ammonium cations multiple hydrogen bonds, to form two inorganic layers at z = 1/4 and 3/4.
The examination of the organic cation shows that the values of the N—C, C—C distances and N—C—C, C—C—C angles range from 1.379 (4) to 1.516 (5) Å and 116. 2(3) to 122.4 (3)°, respectively. These values are similar to those obtained in other organic materials containing the same organic groups (Smirani and Rzaigui, 2009; Souissi et al. 2009).