organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­chloro-1,1′-[(pentane-1,5-diyldi­­oxy)bis­­(nitrilo­methyl­­idyne)]di­benzene

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 9 July 2009; accepted 13 July 2009; online 18 July 2009)

The mol­ecule of the title compound, C19H20Cl2N2O2, which lies across a crystallographic inversion centre, adopts a linear configuration. The dihedral angle between the two halves of the mol­ecule is 5.14 (2)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into an infinite zigzag chain supra­molecular structure.

Related literature

For background to Schiff base compounds in transition metal coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For the properties of Schiff base–metal complexes, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1667.]). For our work on the synthesis and structural characterization of Schiff base–bis­oxime compounds, see: Dong et al. (2008a[Dong, W. K., Shi, J. Y., Zhong, J. K., Tian, Y. Q. & Duan, J. G. (2008a). Chin. J. Inorg. Chem. 28, 10-14.]). For related structures, see: Dong et al. (2008b[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008b). Acta Cryst. E64, o1600-o1601.], 2009[Dong, W.-K., Wu, J.-C., Sun, Y.-X., Yao, J. & Tong, J.-F. (2009). Acta Cryst. E65, o1248.]); Sun et al. (2009[Sun, Y.-X., Wu, J.-C., Dong, W.-K., Gong, S. & Tong, J.-F. (2009). Acta Cryst. E65, o1238.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20Cl2N2O2

  • Mr = 379.27

  • Monoclinic, P 21 /c

  • a = 12.5025 (12) Å

  • b = 19.7801 (17) Å

  • c = 7.8085 (9) Å

  • β = 96.747 (1)°

  • V = 1917.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.908

  • 9529 measured reflections

  • 3376 independent reflections

  • 1631 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.02

  • 3376 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.60 3.527 (4) 177
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds are one kind of important stereochemical models in transition metal coordination chemistry due to their ease of preparation and structural variations (Granovski et al., 1993) and play an important role in the development of coordination chemistry owing to forming stable complexes with most of the transition metals or nontransition metals, in which many could exhibit intresting properties, including magnetic, optics and catalysis (Ghosh et al., 2006; Ward et al., 2007). In view of these facts and in continuation of our works on the synthesis and structural characterization of Schiff base bisoxime compounds (Dong et al., 2008a), here we report synthesis and crystal structure of the title compound (Fig. 1).

The single-crystal structure of the title compound has a crystallographic inversion centre (symmetry code: -x, -y, -z) and twofold screw axis (symmetry code: -x, 1/2 + y, 1/2 - z), and adopts a linear configuration. This structure is not similar to what was observed in our previously reported series bisoxime compounds containing five-methene bridge, which assume a W-shape configuration (Dong et al., 2008b) and distorted Z configuration (Sun et al., 2009). The dihedral angle between the two halves of the molecule is 5.14 (2)°. Intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) link the neighbouring molecules into an infinite zigzag chain supramolecular structure.

Related literature top

For background to Schiff base compounds in transition metal coordination chemistry, see: Granovski et al. (1993). For the properties of Schiff base–metal complexes, see: Ghosh et al. (2006); Ward (2007). For our work on the synthesis and structural characterization of Schiff base–bisoxime compounds, see: Dong et al. (2008a). For related structures, see: Dong et al. (2008b, 2009); Sun et al. (2009).

Experimental top

2,2'-Dichloro-1,1'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]dibenzene was synthesized according to an analogous method reported earlier (Dong et al., 2009). To an ethanol solution (4 ml) of o-chlorobenzaldehyde (394.1 mg, 2.80 mmol) was added an ethanol absolute (3 ml) of 1, 5-bis(aminooxy)pentane (187.9 mg, 1.40 mmol). The mixture solution was stirred at 328 K for 8 h. After cooling to room temperature, no precipitate was formed, when the mixture solution was concentrated to about 1 ml under reduced pressure, and cooled to room temperature, the precipitate was filtered, and washed successively with ethanol and n-hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 119.1 mg of the title compound. Yield, 24.7%. m. p. 327–328 K. Anal. Calcd. for C19H20Cl2N2O2: C, 60.17; H, 5.32; N, 7.39. Found: C, 60.10; H, 5.53; N, 7.27.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after one month by slow evaporation from a methanol solution of the title compound.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 Å (CH2), 0.93 Å (CH), and Uiso(H) = 1.20 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of zigzag chain supramolecular structure is formed by C—H···O intermolecular interactions with H bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2,2'-Dichloro-1,1'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]dibenzene top
Crystal data top
C19H20Cl2N2O2F(000) = 792
Mr = 379.27Dx = 1.314 Mg m3
Monoclinic, P21/cMelting point = 327–328 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5025 (12) ÅCell parameters from 1696 reflections
b = 19.7801 (17) Åθ = 2.6–21.6°
c = 7.8085 (9) ŵ = 0.35 mm1
β = 96.747 (1)°T = 298 K
V = 1917.7 (3) Å3Needle-like, colorless
Z = 40.45 × 0.30 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3376 independent reflections
Radiation source: fine-focus sealed tube1631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1114
Tmin = 0.857, Tmax = 0.908k = 2319
9529 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.181P]
where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H20Cl2N2O2V = 1917.7 (3) Å3
Mr = 379.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5025 (12) ŵ = 0.35 mm1
b = 19.7801 (17) ÅT = 298 K
c = 7.8085 (9) Å0.45 × 0.30 × 0.28 mm
β = 96.747 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3376 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1631 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.908Rint = 0.048
9529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3376 reflectionsΔρmin = 0.25 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.35447 (6)0.01799 (4)0.52460 (14)0.0757 (4)
Cl20.26416 (7)0.37373 (5)0.36888 (13)0.0750 (3)
N11.03773 (19)0.03387 (13)0.2814 (3)0.0518 (7)
N20.38680 (19)0.17370 (14)0.2572 (3)0.0548 (8)
O10.98008 (15)0.02573 (10)0.2391 (3)0.0561 (6)
O20.48710 (16)0.18002 (11)0.1578 (3)0.0676 (7)
C10.8763 (2)0.00878 (16)0.1514 (4)0.0547 (9)
H1A0.83610.01790.22600.066*
H1B0.88440.01750.04880.066*
C20.8178 (2)0.07350 (15)0.1030 (4)0.0500 (9)
H2A0.85670.09850.02310.060*
H2B0.81590.10100.20540.060*
C30.7034 (2)0.06076 (15)0.0203 (4)0.0508 (9)
H3A0.70540.03330.08230.061*
H3B0.66460.03570.10000.061*
C40.6438 (2)0.12609 (15)0.0285 (4)0.0514 (9)
H4A0.64160.15330.07440.062*
H4B0.68330.15130.10710.062*
C50.5302 (2)0.11490 (16)0.1123 (4)0.0572 (10)
H5A0.53020.08680.21410.069*
H5B0.48760.09270.03270.069*
C61.1294 (2)0.02145 (15)0.3602 (4)0.0478 (9)
H61.15010.02310.38290.057*
C71.2036 (2)0.07616 (16)0.4163 (4)0.0427 (8)
C81.3086 (2)0.06409 (15)0.4923 (4)0.0481 (8)
C91.3784 (2)0.11648 (18)0.5446 (4)0.0592 (10)
H91.44800.10710.59470.071*
C101.3447 (3)0.18221 (19)0.5225 (5)0.0696 (11)
H101.39130.21760.55730.084*
C111.2412 (3)0.19537 (18)0.4484 (5)0.0693 (11)
H111.21820.23990.43230.083*
C121.1719 (2)0.14340 (17)0.3981 (4)0.0551 (9)
H121.10200.15340.35060.066*
C130.3452 (2)0.23100 (17)0.2923 (4)0.0554 (10)
H130.38230.26970.25280.066*
C140.2399 (2)0.23755 (16)0.3936 (4)0.0434 (8)
C150.1946 (2)0.30034 (15)0.4349 (4)0.0473 (8)
C160.0941 (3)0.30657 (19)0.5273 (4)0.0618 (10)
H160.06500.34910.55320.074*
C170.0375 (3)0.2494 (2)0.5807 (5)0.0651 (11)
H170.03050.25330.64270.078*
C180.0805 (3)0.18646 (19)0.5430 (4)0.0618 (10)
H180.04200.14790.58020.074*
C190.1803 (2)0.18066 (16)0.4505 (4)0.0548 (9)
H190.20880.13790.42530.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0486 (5)0.0534 (6)0.1195 (9)0.0057 (4)0.0139 (5)0.0063 (6)
Cl20.0702 (6)0.0465 (6)0.1062 (8)0.0037 (4)0.0024 (5)0.0050 (5)
N10.0426 (17)0.0486 (18)0.061 (2)0.0090 (13)0.0089 (14)0.0017 (15)
N20.0388 (16)0.0545 (19)0.068 (2)0.0067 (13)0.0065 (14)0.0003 (16)
O10.0426 (13)0.0461 (15)0.0745 (17)0.0089 (10)0.0153 (11)0.0005 (12)
O20.0467 (14)0.0513 (15)0.097 (2)0.0068 (11)0.0232 (13)0.0020 (14)
C10.0383 (18)0.057 (2)0.065 (2)0.0020 (16)0.0098 (17)0.0033 (19)
C20.048 (2)0.046 (2)0.054 (2)0.0081 (15)0.0018 (16)0.0015 (17)
C30.0424 (19)0.050 (2)0.056 (2)0.0040 (15)0.0075 (16)0.0031 (18)
C40.047 (2)0.052 (2)0.053 (2)0.0066 (16)0.0069 (16)0.0019 (18)
C50.047 (2)0.051 (2)0.070 (3)0.0118 (16)0.0080 (18)0.0019 (19)
C60.0413 (19)0.041 (2)0.059 (2)0.0021 (16)0.0035 (17)0.0016 (18)
C70.0390 (19)0.044 (2)0.045 (2)0.0003 (15)0.0024 (15)0.0028 (16)
C80.0434 (19)0.046 (2)0.054 (2)0.0009 (16)0.0019 (16)0.0038 (17)
C90.041 (2)0.058 (3)0.076 (3)0.0084 (17)0.0022 (18)0.010 (2)
C100.063 (3)0.054 (3)0.088 (3)0.0170 (19)0.005 (2)0.014 (2)
C110.067 (3)0.047 (2)0.091 (3)0.0034 (19)0.006 (2)0.000 (2)
C120.043 (2)0.051 (2)0.068 (3)0.0020 (16)0.0066 (17)0.0000 (19)
C130.049 (2)0.041 (2)0.074 (3)0.0053 (16)0.0004 (19)0.0019 (19)
C140.0370 (19)0.049 (2)0.044 (2)0.0076 (16)0.0047 (15)0.0023 (17)
C150.048 (2)0.044 (2)0.051 (2)0.0067 (16)0.0080 (17)0.0059 (17)
C160.053 (2)0.058 (3)0.073 (3)0.0161 (19)0.0045 (19)0.015 (2)
C170.047 (2)0.080 (3)0.066 (3)0.008 (2)0.0041 (19)0.013 (2)
C180.051 (2)0.066 (3)0.067 (3)0.0014 (18)0.0002 (19)0.005 (2)
C190.050 (2)0.048 (2)0.065 (3)0.0079 (17)0.0004 (18)0.0007 (19)
Geometric parameters (Å, º) top
Cl1—C81.731 (3)C6—H60.9300
Cl2—C151.739 (3)C7—C121.390 (4)
N1—C61.260 (3)C7—C81.396 (4)
N1—O11.401 (3)C8—C91.385 (4)
N2—C131.264 (3)C9—C101.371 (4)
N2—O21.401 (3)C9—H90.9300
O1—C11.434 (3)C10—C111.379 (4)
O2—C51.425 (3)C10—H100.9300
C1—C21.500 (4)C11—C121.371 (4)
C1—H1A0.9700C11—H110.9300
C1—H1B0.9700C12—H120.9300
C2—C31.520 (4)C13—C141.459 (4)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.387 (4)
C3—C41.518 (4)C14—C191.393 (4)
C3—H3A0.9700C15—C161.378 (4)
C3—H3B0.9700C16—C171.373 (4)
C4—C51.508 (3)C16—H160.9300
C4—H4A0.9700C17—C181.374 (4)
C4—H4B0.9700C17—H170.9300
C5—H5A0.9700C18—C191.371 (4)
C5—H5B0.9700C18—H180.9300
C6—C71.459 (4)C19—H190.9300
C6—N1—O1111.4 (2)C12—C7—C6121.1 (3)
C13—N2—O2111.0 (3)C8—C7—C6122.2 (3)
N1—O1—C1109.1 (2)C9—C8—C7121.7 (3)
N2—O2—C5110.2 (2)C9—C8—Cl1118.2 (2)
O1—C1—C2107.9 (2)C7—C8—Cl1120.1 (2)
O1—C1—H1A110.1C10—C9—C8119.9 (3)
C2—C1—H1A110.1C10—C9—H9120.0
O1—C1—H1B110.1C8—C9—H9120.0
C2—C1—H1B110.1C9—C10—C11119.4 (3)
H1A—C1—H1B108.4C9—C10—H10120.3
C1—C2—C3111.9 (2)C11—C10—H10120.3
C1—C2—H2A109.2C12—C11—C10120.6 (3)
C3—C2—H2A109.2C12—C11—H11119.7
C1—C2—H2B109.2C10—C11—H11119.7
C3—C2—H2B109.2C11—C12—C7121.7 (3)
H2A—C2—H2B107.9C11—C12—H12119.2
C4—C3—C2112.1 (2)C7—C12—H12119.2
C4—C3—H3A109.2N2—C13—C14121.3 (3)
C2—C3—H3A109.2N2—C13—H13119.4
C4—C3—H3B109.2C14—C13—H13119.4
C2—C3—H3B109.2C15—C14—C19117.4 (3)
H3A—C3—H3B107.9C15—C14—C13121.5 (3)
C5—C4—C3113.2 (2)C19—C14—C13121.0 (3)
C5—C4—H4A108.9C16—C15—C14121.6 (3)
C3—C4—H4A108.9C16—C15—Cl2118.3 (3)
C5—C4—H4B108.9C14—C15—Cl2120.1 (2)
C3—C4—H4B108.9C17—C16—C15119.4 (3)
H4A—C4—H4B107.8C17—C16—H16120.3
O2—C5—C4106.5 (2)C15—C16—H16120.3
O2—C5—H5A110.4C16—C17—C18120.4 (3)
C4—C5—H5A110.4C16—C17—H17119.8
O2—C5—H5B110.4C18—C17—H17119.8
C4—C5—H5B110.4C19—C18—C17119.8 (3)
H5A—C5—H5B108.6C19—C18—H18120.1
N1—C6—C7120.8 (3)C17—C18—H18120.1
N1—C6—H6119.6C18—C19—C14121.3 (3)
C7—C6—H6119.6C18—C19—H19119.3
C12—C7—C8116.7 (3)C14—C19—H19119.3
C6—N1—O1—C1179.5 (3)C9—C10—C11—C120.5 (6)
C13—N2—O2—C5177.0 (3)C10—C11—C12—C71.3 (5)
N1—O1—C1—C2178.3 (2)C8—C7—C12—C111.5 (5)
O1—C1—C2—C3175.9 (2)C6—C7—C12—C11179.2 (3)
C1—C2—C3—C4179.9 (3)O2—N2—C13—C14179.5 (3)
C2—C3—C4—C5179.5 (3)N2—C13—C14—C15178.9 (3)
N2—O2—C5—C4172.1 (2)N2—C13—C14—C192.0 (5)
C3—C4—C5—O2177.2 (3)C19—C14—C15—C160.6 (5)
O1—N1—C6—C7179.8 (3)C13—C14—C15—C16178.5 (3)
N1—C6—C7—C125.7 (5)C19—C14—C15—Cl2179.9 (2)
N1—C6—C7—C8175.1 (3)C13—C14—C15—Cl21.0 (4)
C12—C7—C8—C90.9 (5)C14—C15—C16—C170.3 (5)
C6—C7—C8—C9179.8 (3)Cl2—C15—C16—C17179.9 (3)
C12—C7—C8—Cl1178.7 (2)C15—C16—C17—C180.2 (5)
C6—C7—C8—Cl10.6 (4)C16—C17—C18—C190.4 (5)
C7—C8—C9—C100.1 (5)C17—C18—C19—C140.2 (5)
Cl1—C8—C9—C10179.4 (3)C15—C14—C19—C180.4 (5)
C8—C9—C10—C110.1 (5)C13—C14—C19—C18178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.603.527 (4)177
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20Cl2N2O2
Mr379.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5025 (12), 19.7801 (17), 7.8085 (9)
β (°) 96.747 (1)
V3)1917.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.45 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
9529, 3376, 1631
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.02
No. of reflections3376
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.603.527 (4)177.1
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008b). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Shi, J. Y., Zhong, J. K., Tian, Y. Q. & Duan, J. G. (2008a). Chin. J. Inorg. Chem. 28, 10–14.  Google Scholar
First citationDong, W.-K., Wu, J.-C., Sun, Y.-X., Yao, J. & Tong, J.-F. (2009). Acta Cryst. E65, o1248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-X., Wu, J.-C., Dong, W.-K., Gong, S. & Tong, J.-F. (2009). Acta Cryst. E65, o1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1667.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds