organic compounds
Adamantane-1-thioamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: shameed@qau.edu.pk
The title compound, C11H17NS, is an important intermediate for the synthesis of biologically active adamantlythiazolo-oxadiazoles. The adamantyl residue is disordered about a twofold rotation axis over two sites with site-occupation factors of 0.817 (3) and 0.183 (3). The is stabilized by intermolecular N—H⋯S hydrogen-bonding interactions.
Related literature
Adamantane derivatives include well known drugs such as Rimantadine, Memantine, Adapalene and Adatanserin, see: Krasnikov et al. (2004). For their biological activity, see: Singh et al. (2007); Wennekes et al. (2007); Inaba et al. (2007); Kolocouris et al. (2007). Thioamides are not only widely used as fungicides (Klimesova et al., 1999) and herbicides (Bahadir et al., 1979) but are also valuable intermediates in the synthesis of (Jagodzinski, 2003). For the synthesis of the title compound, see: Kaboudin & Elhamifar (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809027470/hg2536sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027470/hg2536Isup2.hkl
A solution of P4S10 (3.1 g, 7.0 mmol.) in ethanol (10 ml) was stirred for 1 h. Adamantane-1-carbonitrile (0.5 g, 3.5 mmol.) was added and the mixture refluxed for 12 h. The mixture was concentrated, water (25 ml) was added and extracted with dichloromethane (3 × 25 ml). The combined organic extracts were dried (anhydrous Na2SO4, concentrated on rotary and refrigerated. The white precipitates separated were recrystallized from ethanol. Yield: 62%; m.p.: 159–162 °C; Rf: 0.40 (n-hexane: ethylacetate; 7:3); IR (νmax, KBr, cm-1): 3424, 3323, 3144, 2907, 2848, 1656, 1449, 1384, 1310, 1240; 1H-NMR (CDCl3): δ 7.9 (1H, b), 7.1 (1H, b), 1.9 (9H, b), 1.71 (6H, b); 13C-NMR (CDCl3): δ 218.8, 45.6, 41.7, 36.2, 28.4; EIMS: (m/z %) 195 (80), 162 (15), 135 (100), 107 (13),93 (20), 79 (23), 60 (13); Elemental analysis for C11H17NS (195.32):C, 67.64; H, 8.77; N, 7.17. Found: C, 67.87; H, 8.88; N, 7.38.
H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). The adamantyl residue is disordered about a twofold rotation axis over two sites with site occupation factors of 0.817 (3) and 0.183 (3). Similarity restraints were applied to keep the bond lengths and angles of the minor occupied site in a reasonable range.
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H17NS | F(000) = 848 |
Mr = 195.32 | Dx = 1.208 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7109 reflections |
a = 24.255 (2) Å | θ = 3.5–25.9° |
b = 7.9879 (5) Å | µ = 0.26 mm−1 |
c = 11.2928 (9) Å | T = 173 K |
β = 100.859 (7)° | Block, colourless |
V = 2148.8 (3) Å3 | 0.39 × 0.26 × 0.25 mm |
Z = 8 |
Stoe IPDS-II two-circle diffractometer | 2002 independent reflections |
Radiation source: fine-focus sealed tube | 1703 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 25.5°, θmin = 3.4° |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | h = −29→29 |
Tmin = 0.907, Tmax = 0.939 | k = −9→8 |
7423 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6628P] where P = (Fo2 + 2Fc2)/3 |
2002 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.20 e Å−3 |
35 restraints | Δρmin = −0.30 e Å−3 |
C11H17NS | V = 2148.8 (3) Å3 |
Mr = 195.32 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.255 (2) Å | µ = 0.26 mm−1 |
b = 7.9879 (5) Å | T = 173 K |
c = 11.2928 (9) Å | 0.39 × 0.26 × 0.25 mm |
β = 100.859 (7)° |
Stoe IPDS-II two-circle diffractometer | 2002 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | 1703 reflections with I > 2σ(I) |
Tmin = 0.907, Tmax = 0.939 | Rint = 0.040 |
7423 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 35 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.20 e Å−3 |
2002 reflections | Δρmin = −0.30 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.21599 (2) | 0.61925 (7) | 0.64064 (3) | 0.0548 (2) | |
N1 | 0.20667 (6) | 0.55153 (18) | 0.41220 (11) | 0.0355 (3) | |
H1A | 0.1949 (7) | 0.495 (2) | 0.3461 (12) | 0.041 (5)* | |
H1B | 0.2299 (7) | 0.6339 (18) | 0.4094 (17) | 0.044 (5)* | |
C1 | 0.19018 (6) | 0.51441 (19) | 0.51351 (12) | 0.0307 (3) | |
C2 | 0.14709 (6) | 0.37457 (18) | 0.51046 (12) | 0.0280 (3) | |
C3 | 0.09531 (7) | 0.4503 (2) | 0.55352 (17) | 0.0346 (5) | 0.817 (2) |
H3A | 0.1071 | 0.4995 | 0.6348 | 0.041* | 0.817 (2) |
H3B | 0.0789 | 0.5406 | 0.4978 | 0.041* | 0.817 (2) |
C4 | 0.05109 (9) | 0.3143 (4) | 0.5574 (2) | 0.0449 (6) | 0.817 (2) |
H4 | 0.0179 | 0.3640 | 0.5855 | 0.054* | 0.817 (2) |
C5 | 0.03278 (11) | 0.2407 (4) | 0.4326 (2) | 0.0535 (7) | 0.817 (2) |
H5A | 0.0040 | 0.1535 | 0.4346 | 0.064* | 0.817 (2) |
H5B | 0.0159 | 0.3294 | 0.3760 | 0.064* | 0.817 (2) |
C6 | 0.08243 (15) | 0.1650 (4) | 0.3893 (3) | 0.0553 (10) | 0.817 (2) |
H6 | 0.0697 | 0.1172 | 0.3068 | 0.066* | 0.817 (2) |
C7 | 0.12688 (9) | 0.3016 (3) | 0.38385 (17) | 0.0424 (5) | 0.817 (2) |
H7A | 0.1591 | 0.2529 | 0.3534 | 0.051* | 0.817 (2) |
H7B | 0.1104 | 0.3916 | 0.3279 | 0.051* | 0.817 (2) |
C8 | 0.17150 (8) | 0.2349 (3) | 0.59767 (19) | 0.0401 (5) | 0.817 (2) |
H8A | 0.1842 | 0.2821 | 0.6793 | 0.048* | 0.817 (2) |
H8B | 0.2044 | 0.1845 | 0.5709 | 0.048* | 0.817 (2) |
C9 | 0.07646 (14) | 0.1784 (3) | 0.6434 (2) | 0.0466 (6) | 0.817 (2) |
H9A | 0.0479 | 0.0913 | 0.6479 | 0.056* | 0.817 (2) |
H9B | 0.0884 | 0.2263 | 0.7251 | 0.056* | 0.817 (2) |
C10 | 0.10857 (13) | 0.0264 (3) | 0.4743 (3) | 0.0591 (7) | 0.817 (2) |
H10A | 0.1415 | −0.0210 | 0.4460 | 0.071* | 0.817 (2) |
H10B | 0.0809 | −0.0645 | 0.4756 | 0.071* | 0.817 (2) |
C11 | 0.12686 (11) | 0.0991 (3) | 0.6021 (2) | 0.0493 (6) | 0.817 (2) |
H11 | 0.1429 | 0.0084 | 0.6594 | 0.059* | 0.817 (2) |
C3' | 0.0918 (3) | 0.4290 (11) | 0.4335 (8) | 0.037 (2)* | 0.183 (2) |
H3'1 | 0.0980 | 0.4610 | 0.3523 | 0.045* | 0.183 (2) |
H3'2 | 0.0774 | 0.5284 | 0.4703 | 0.045* | 0.183 (2) |
C4' | 0.0475 (5) | 0.2869 (14) | 0.4214 (10) | 0.046 (3)* | 0.183 (2) |
H4' | 0.0109 | 0.3238 | 0.3721 | 0.055* | 0.183 (2) |
C5' | 0.0714 (5) | 0.1404 (17) | 0.3637 (12) | 0.040 (4)* | 0.183 (2) |
H5'1 | 0.0429 | 0.0503 | 0.3489 | 0.048* | 0.183 (2) |
H5'2 | 0.0794 | 0.1758 | 0.2846 | 0.048* | 0.183 (2) |
C6' | 0.1241 (4) | 0.0722 (14) | 0.4391 (9) | 0.043 (3)* | 0.183 (2) |
H6' | 0.1372 | −0.0283 | 0.3994 | 0.052* | 0.183 (2) |
C7' | 0.1683 (3) | 0.2123 (10) | 0.4505 (8) | 0.039 (2)* | 0.183 (2) |
H7'1 | 0.1757 | 0.2408 | 0.3696 | 0.046* | 0.183 (2) |
H7'2 | 0.2039 | 0.1727 | 0.5006 | 0.046* | 0.183 (2) |
C8' | 0.1384 (3) | 0.3213 (10) | 0.6373 (7) | 0.0338 (19)* | 0.183 (2) |
H8'1 | 0.1244 | 0.4179 | 0.6778 | 0.041* | 0.183 (2) |
H8'2 | 0.1749 | 0.2865 | 0.6862 | 0.041* | 0.183 (2) |
C9' | 0.0414 (5) | 0.2430 (18) | 0.5496 (11) | 0.057 (4)* | 0.183 (2) |
H9'1 | 0.0112 | 0.1585 | 0.5460 | 0.068* | 0.183 (2) |
H9'2 | 0.0295 | 0.3445 | 0.5885 | 0.068* | 0.183 (2) |
C10' | 0.1166 (5) | 0.0295 (15) | 0.5663 (11) | 0.045 (3)* | 0.183 (2) |
H10C | 0.0897 | −0.0645 | 0.5626 | 0.055* | 0.183 (2) |
H10D | 0.1530 | −0.0084 | 0.6136 | 0.055* | 0.183 (2) |
C11' | 0.0957 (5) | 0.1737 (16) | 0.6295 (11) | 0.041 (4)* | 0.183 (2) |
H11' | 0.0892 | 0.1408 | 0.7112 | 0.049* | 0.183 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0758 (4) | 0.0683 (4) | 0.0212 (2) | −0.0451 (3) | 0.01175 (19) | −0.00661 (18) |
N1 | 0.0424 (7) | 0.0430 (8) | 0.0228 (6) | −0.0139 (6) | 0.0104 (5) | −0.0023 (6) |
C1 | 0.0332 (7) | 0.0362 (8) | 0.0227 (7) | −0.0052 (6) | 0.0053 (5) | 0.0032 (6) |
C2 | 0.0324 (7) | 0.0308 (8) | 0.0207 (6) | −0.0046 (6) | 0.0048 (5) | 0.0004 (5) |
C3 | 0.0337 (9) | 0.0358 (10) | 0.0338 (10) | −0.0021 (8) | 0.0052 (7) | −0.0008 (8) |
C4 | 0.0373 (11) | 0.0496 (16) | 0.0490 (13) | −0.0057 (11) | 0.0111 (9) | −0.0014 (11) |
C5 | 0.0488 (15) | 0.0577 (16) | 0.0497 (15) | −0.0226 (13) | −0.0013 (11) | 0.0048 (12) |
C6 | 0.078 (2) | 0.0540 (17) | 0.0329 (14) | −0.0292 (15) | 0.0086 (13) | −0.0115 (12) |
C7 | 0.0573 (12) | 0.0448 (12) | 0.0262 (9) | −0.0168 (9) | 0.0111 (8) | −0.0075 (8) |
C8 | 0.0404 (11) | 0.0374 (11) | 0.0406 (11) | 0.0012 (8) | 0.0025 (8) | 0.0096 (9) |
C9 | 0.0510 (16) | 0.0478 (15) | 0.0425 (13) | −0.0167 (12) | 0.0124 (12) | 0.0020 (10) |
C10 | 0.0797 (18) | 0.0336 (13) | 0.0666 (19) | −0.0123 (12) | 0.0206 (15) | −0.0110 (12) |
C11 | 0.0638 (15) | 0.0329 (12) | 0.0483 (13) | −0.0030 (11) | 0.0032 (11) | 0.0106 (11) |
S1—C1 | 1.6780 (14) | C9—H9B | 0.9900 |
N1—C1 | 1.3149 (19) | C10—C11 | 1.542 (4) |
N1—H1A | 0.874 (9) | C10—H10A | 0.9900 |
N1—H1B | 0.870 (9) | C10—H10B | 0.9900 |
C1—C2 | 1.5257 (19) | C11—H11 | 1.0000 |
C2—C3' | 1.518 (7) | C3'—C4' | 1.550 (12) |
C2—C8 | 1.532 (2) | C3'—H3'1 | 0.9900 |
C2—C7 | 1.536 (2) | C3'—H3'2 | 0.9900 |
C2—C8' | 1.546 (8) | C4'—C5' | 1.507 (14) |
C2—C3 | 1.552 (2) | C4'—C9' | 1.524 (14) |
C2—C7' | 1.592 (8) | C4'—H4' | 1.0000 |
C3—C4 | 1.533 (3) | C5'—C6' | 1.498 (13) |
C3—H3A | 0.9900 | C5'—H5'1 | 0.9900 |
C3—H3B | 0.9900 | C5'—H5'2 | 0.9900 |
C4—C9 | 1.509 (4) | C6'—C10' | 1.521 (13) |
C4—C5 | 1.515 (3) | C6'—C7' | 1.538 (12) |
C4—H4 | 1.0000 | C6'—H6' | 1.0000 |
C5—C6 | 1.509 (5) | C7'—H7'1 | 0.9900 |
C5—H5A | 0.9900 | C7'—H7'2 | 0.9900 |
C5—H5B | 0.9900 | C8'—C11' | 1.561 (12) |
C6—C10 | 1.523 (4) | C8'—H8'1 | 0.9900 |
C6—C7 | 1.543 (4) | C8'—H8'2 | 0.9900 |
C6—H6 | 1.0000 | C9'—C11' | 1.553 (14) |
C7—H7A | 0.9900 | C9'—H9'1 | 0.9900 |
C7—H7B | 0.9900 | C9'—H9'2 | 0.9900 |
C8—C11 | 1.540 (3) | C10'—C11' | 1.492 (13) |
C8—H8A | 0.9900 | C10'—H10C | 0.9900 |
C8—H8B | 0.9900 | C10'—H10D | 0.9900 |
C9—C11 | 1.526 (4) | C11'—H11' | 1.0000 |
C9—H9A | 0.9900 | ||
C1—N1—H1A | 121.5 (13) | H9A—C9—H9B | 108.1 |
C1—N1—H1B | 120.4 (13) | C6—C10—C11 | 109.2 (2) |
H1A—N1—H1B | 118.0 (18) | C6—C10—H10A | 109.8 |
N1—C1—C2 | 117.69 (13) | C11—C10—H10A | 109.8 |
N1—C1—S1 | 120.42 (11) | C6—C10—H10B | 109.8 |
C2—C1—S1 | 121.89 (11) | C11—C10—H10B | 109.8 |
C3'—C2—C1 | 109.3 (3) | H10A—C10—H10B | 108.3 |
C3'—C2—C8 | 140.3 (3) | C9—C11—C8 | 109.1 (2) |
C1—C2—C8 | 109.80 (12) | C9—C11—C10 | 109.7 (2) |
C3'—C2—C7 | 58.9 (4) | C8—C11—C10 | 108.4 (2) |
C1—C2—C7 | 113.32 (13) | C9—C11—H11 | 109.9 |
C8—C2—C7 | 109.82 (15) | C8—C11—H11 | 109.9 |
C3'—C2—C8' | 110.5 (4) | C10—C11—H11 | 109.9 |
C1—C2—C8' | 113.1 (3) | C2—C3'—C4' | 111.3 (7) |
C8—C2—C8' | 46.1 (3) | C2—C3'—H3'1 | 109.4 |
C7—C2—C8' | 133.0 (3) | C4'—C3'—H3'1 | 109.4 |
C3'—C2—C3 | 52.3 (4) | C2—C3'—H3'2 | 109.4 |
C1—C2—C3 | 107.40 (13) | C4'—C3'—H3'2 | 109.4 |
C8—C2—C3 | 108.66 (14) | H3'1—C3'—H3'2 | 108.0 |
C7—C2—C3 | 107.70 (14) | C5'—C4'—C9' | 110.3 (10) |
C8'—C2—C3 | 63.8 (3) | C5'—C4'—C3' | 106.9 (9) |
C3'—C2—C7' | 108.1 (5) | C9'—C4'—C3' | 106.0 (9) |
C1—C2—C7' | 109.3 (3) | C5'—C4'—H4' | 111.2 |
C8—C2—C7' | 64.1 (3) | C9'—C4'—H4' | 111.2 |
C7—C2—C7' | 50.8 (3) | C3'—C4'—H4' | 111.2 |
C8'—C2—C7' | 106.3 (5) | C6'—C5'—C4' | 113.1 (10) |
C3—C2—C7' | 142.7 (3) | C6'—C5'—H5'1 | 109.0 |
C4—C3—C2 | 110.17 (16) | C4'—C5'—H5'1 | 109.0 |
C4—C3—H3A | 109.6 | C6'—C5'—H5'2 | 109.0 |
C2—C3—H3A | 109.6 | C4'—C5'—H5'2 | 109.0 |
C4—C3—H3B | 109.6 | H5'1—C5'—H5'2 | 107.8 |
C2—C3—H3B | 109.6 | C5'—C6'—C10' | 112.2 (10) |
H3A—C3—H3B | 108.1 | C5'—C6'—C7' | 106.9 (9) |
C9—C4—C5 | 109.4 (2) | C10'—C6'—C7' | 106.8 (8) |
C9—C4—C3 | 109.02 (19) | C5'—C6'—H6' | 110.3 |
C5—C4—C3 | 109.4 (2) | C10'—C6'—H6' | 110.3 |
C9—C4—H4 | 109.7 | C7'—C6'—H6' | 110.3 |
C5—C4—H4 | 109.7 | C6'—C7'—C2 | 110.6 (6) |
C3—C4—H4 | 109.7 | C6'—C7'—H7'1 | 109.5 |
C6—C5—C4 | 110.2 (2) | C2—C7'—H7'1 | 109.5 |
C6—C5—H5A | 109.6 | C6'—C7'—H7'2 | 109.5 |
C4—C5—H5A | 109.6 | C2—C7'—H7'2 | 109.5 |
C6—C5—H5B | 109.6 | H7'1—C7'—H7'2 | 108.1 |
C4—C5—H5B | 109.6 | C2—C8'—C11' | 111.1 (6) |
H5A—C5—H5B | 108.1 | C2—C8'—H8'1 | 109.4 |
C5—C6—C10 | 110.5 (3) | C11'—C8'—H8'1 | 109.4 |
C5—C6—C7 | 109.6 (2) | C2—C8'—H8'2 | 109.4 |
C10—C6—C7 | 109.2 (3) | C11'—C8'—H8'2 | 109.4 |
C5—C6—H6 | 109.2 | H8'1—C8'—H8'2 | 108.0 |
C10—C6—H6 | 109.2 | C4'—C9'—C11' | 114.2 (10) |
C7—C6—H6 | 109.2 | C4'—C9'—H9'1 | 108.7 |
C2—C7—C6 | 109.51 (17) | C11'—C9'—H9'1 | 108.7 |
C2—C7—H7A | 109.8 | C4'—C9'—H9'2 | 108.7 |
C6—C7—H7A | 109.8 | C11'—C9'—H9'2 | 108.7 |
C2—C7—H7B | 109.8 | H9'1—C9'—H9'2 | 107.6 |
C6—C7—H7B | 109.8 | C11'—C10'—C6' | 112.9 (9) |
H7A—C7—H7B | 108.2 | C11'—C10'—H10C | 109.0 |
C2—C8—C11 | 110.19 (15) | C6'—C10'—H10C | 109.0 |
C2—C8—H8A | 109.6 | C11'—C10'—H10D | 109.0 |
C11—C8—H8A | 109.6 | C6'—C10'—H10D | 109.0 |
C2—C8—H8B | 109.6 | H10C—C10'—H10D | 107.8 |
C11—C8—H8B | 109.6 | C10'—C11'—C9' | 108.9 (10) |
H8A—C8—H8B | 108.1 | C10'—C11'—C8' | 109.2 (10) |
C4—C9—C11 | 110.8 (2) | C9'—C11'—C8' | 104.2 (9) |
C4—C9—H9A | 109.5 | C10'—C11'—H11' | 111.4 |
C11—C9—H9A | 109.5 | C9'—C11'—H11' | 111.4 |
C4—C9—H9B | 109.5 | C8'—C11'—H11' | 111.4 |
C11—C9—H9B | 109.5 | ||
N1—C1—C2—C3' | −66.3 (4) | C4—C9—C11—C8 | 60.1 (3) |
S1—C1—C2—C3' | 113.5 (4) | C4—C9—C11—C10 | −58.4 (3) |
N1—C1—C2—C8 | 120.45 (17) | C2—C8—C11—C9 | −59.3 (2) |
S1—C1—C2—C8 | −59.78 (17) | C2—C8—C11—C10 | 60.1 (2) |
N1—C1—C2—C7 | −2.7 (2) | C6—C10—C11—C9 | 57.2 (3) |
S1—C1—C2—C7 | 177.02 (13) | C6—C10—C11—C8 | −61.8 (3) |
N1—C1—C2—C8' | 170.1 (4) | C1—C2—C3'—C4' | 176.7 (6) |
S1—C1—C2—C8' | −10.1 (4) | C8—C2—C3'—C4' | −13.3 (10) |
N1—C1—C2—C3 | −121.57 (16) | C7—C2—C3'—C4' | 70.5 (7) |
S1—C1—C2—C3 | 58.20 (16) | C8'—C2—C3'—C4' | −58.2 (8) |
N1—C1—C2—C7' | 51.9 (4) | C3—C2—C3'—C4' | −85.9 (7) |
S1—C1—C2—C7' | −128.3 (3) | C7'—C2—C3'—C4' | 57.8 (8) |
C3'—C2—C3—C4 | 80.9 (4) | C2—C3'—C4'—C5' | −59.7 (10) |
C1—C2—C3—C4 | −177.77 (14) | C2—C3'—C4'—C9' | 57.9 (10) |
C8—C2—C3—C4 | −59.06 (18) | C9'—C4'—C5'—C6' | −51.8 (15) |
C7—C2—C3—C4 | 59.85 (19) | C3'—C4'—C5'—C6' | 63.0 (13) |
C8'—C2—C3—C4 | −70.1 (4) | C4'—C5'—C6'—C10' | 53.5 (15) |
C7'—C2—C3—C4 | 12.4 (6) | C4'—C5'—C6'—C7' | −63.2 (13) |
C2—C3—C4—C9 | 59.8 (2) | C5'—C6'—C7'—C2 | 58.7 (10) |
C2—C3—C4—C5 | −59.8 (2) | C10'—C6'—C7'—C2 | −61.6 (9) |
C9—C4—C5—C6 | −59.6 (3) | C3'—C2—C7'—C6' | −57.6 (8) |
C3—C4—C5—C6 | 59.8 (3) | C1—C2—C7'—C6' | −176.6 (6) |
C4—C5—C6—C10 | 60.0 (3) | C8—C2—C7'—C6' | 80.2 (6) |
C4—C5—C6—C7 | −60.3 (3) | C7—C2—C7'—C6' | −71.8 (6) |
C3'—C2—C7—C6 | −79.3 (4) | C8'—C2—C7'—C6' | 61.0 (7) |
C1—C2—C7—C6 | −178.50 (19) | C3—C2—C7'—C6' | −6.9 (10) |
C8—C2—C7—C6 | 58.3 (2) | C3'—C2—C8'—C11' | 59.2 (8) |
C8'—C2—C7—C6 | 10.5 (5) | C1—C2—C8'—C11' | −177.9 (6) |
C3—C2—C7—C6 | −59.9 (2) | C8—C2—C8'—C11' | −82.1 (7) |
C7'—C2—C7—C6 | 85.0 (4) | C7—C2—C8'—C11' | −6.8 (9) |
C5—C6—C7—C2 | 61.0 (3) | C3—C2—C8'—C11' | 83.4 (7) |
C10—C6—C7—C2 | −60.2 (3) | C7'—C2—C8'—C11' | −57.9 (8) |
C3'—C2—C8—C11 | 5.9 (6) | C5'—C4'—C9'—C11' | 52.5 (15) |
C1—C2—C8—C11 | 175.91 (18) | C3'—C4'—C9'—C11' | −62.8 (13) |
C7—C2—C8—C11 | −58.9 (2) | C5'—C6'—C10'—C11' | −55.3 (13) |
C8'—C2—C8—C11 | 72.4 (4) | C7'—C6'—C10'—C11' | 61.5 (11) |
C3—C2—C8—C11 | 58.7 (2) | C6'—C10'—C11'—C9' | 53.7 (13) |
C7'—C2—C8—C11 | −81.6 (4) | C6'—C10'—C11'—C8' | −59.5 (12) |
C5—C4—C9—C11 | 59.2 (3) | C4'—C9'—C11'—C10' | −53.6 (14) |
C3—C4—C9—C11 | −60.5 (3) | C4'—C9'—C11'—C8' | 62.9 (13) |
C5—C6—C10—C11 | −58.5 (3) | C2—C8'—C11'—C10' | 58.0 (10) |
C7—C6—C10—C11 | 62.1 (3) | C2—C8'—C11'—C9' | −58.2 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.87 (1) | 2.63 (1) | 3.4027 (14) | 148 (2) |
N1—H1B···S1ii | 0.87 (1) | 2.49 (1) | 3.3485 (14) | 168 (2) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H17NS |
Mr | 195.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 24.255 (2), 7.9879 (5), 11.2928 (9) |
β (°) | 100.859 (7) |
V (Å3) | 2148.8 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.39 × 0.26 × 0.25 |
Data collection | |
Diffractometer | Stoe IPDS-II two-circle diffractometer |
Absorption correction | Multi-scan (MULABS; Spek, 2009; Blessing, 1995) |
Tmin, Tmax | 0.907, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7423, 2002, 1703 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.607 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.103, 1.07 |
No. of reflections | 2002 |
No. of parameters | 163 |
No. of restraints | 35 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.30 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.874 (9) | 2.631 (13) | 3.4027 (14) | 147.9 (16) |
N1—H1B···S1ii | 0.870 (9) | 2.492 (10) | 3.3485 (14) | 168.1 (17) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, −y+3/2, −z+1. |
Acknowledgements
MKR is grateful to the HEC-Pakistan for financial support for a PhD program under scholarship No.[ILC–0363104].
References
Bahadir, M., Nitz, S., Pailar, H. & Karte, F. (1979). J. Agric. Food Chem. 27, 815–818. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Inaba, Y., Yamamoto, K., Yoshimoto, N., Matsunawa, M., Uno, S., Yamada, S. & Makishima, M. (2007). Mol. Pharmacol. 71, 1298–1311. Web of Science CrossRef PubMed CAS Google Scholar
Jagodzinski, T. S. (2003). Chem. Rev. 103, 197–227. Web of Science CrossRef PubMed CAS Google Scholar
Kaboudin, B. & Elhamifar, D. (2006). Synthesis, pp. 224–226. Web of Science CrossRef Google Scholar
Klimesova, V., Svoboda, M., Karel, W. K., Kaustova, J., Buchta, V. & Kralova, K. (1999). Eur. J. Med. Chem. 34, 433–440. CrossRef CAS Google Scholar
Kolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. Lett. 17, 4358–4362. Web of Science CrossRef PubMed CAS Google Scholar
Krasnikov, S. V., Obuchova, T. A., Yasinskii, O. A. & Balakin, K. V. (2004). Tetrahedron Lett. 45, 711–714. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, C., Kanchan, R., Sharma, U. & Puri, S. K. (2007). J. Med. Chem. 50, 521–527. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wennekes, T., van den Berg, R. J. B. H. N., Donker, W., van der Marel, G. A., Donker, W., van der Marel, G. A., Strijland, A., Aerts, J. M. F. G. & Overkleeft, H. S. (2007). J. Org. Chem. 72, 1088–1097. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Adamantane derivatives have found widespread use as biologically active agents to combat various human pathogens. These derivatives include the well known drugs like Rimantadine, Memantine, Adapalene and Adatanserin (Krasnikov et al., 2004). A broad spectrum of biological activities like antimalarial (Singh et al., 2007), glucosylceramide metabolism inhibitors (Wennekes et al., 2007), vitamin D receptor modulators (Inaba et al., 2007) and anti-influenza (Kolocouris et al., 2007), is associated with adamantane containing preparations and compounds. Thioamides, on the other hand, are not only widely used as fungicides (Klimesova et al., 1999) and herbicides (Bahadir et al., 1979) but are also valuable intermediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003). The title compound, adamantane-1-thioamide (1), was synthesized in this laboratory as an intermediate in the synthesis of adamantlythiazolo-oxadiazoles to explore their potential as antitumour agents. The synthesis was accomplished by treating adamantane-1-carbonitrile with P4S10 according to a known procedure (Kaboudin et al., 2006). Here, we are going to report the crystal structure of (1). The crystal structure is stabilized by intermolecular N—H···S, hydrogen-bond interactions.