organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Adamantane-1-thio­amide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: shameed@qau.edu.pk

(Received 9 July 2009; accepted 13 July 2009; online 18 July 2009)

The title compound, C11H17NS, is an important inter­mediate for the synthesis of biologically active adamantlythia­zolo-oxadiazo­les. The adamantyl residue is disordered about a twofold rotation axis over two sites with site-occupation factors of 0.817 (3) and 0.183 (3). The crystal structure is stabilized by inter­molecular N—H⋯S hydrogen-bonding inter­actions.

Related literature

Adamantane derivatives include well known drugs such as Rimantadine, Memantine, Adapalene and Adatanserin, see: Krasnikov et al. (2004[Krasnikov, S. V., Obuchova, T. A., Yasinskii, O. A. & Balakin, K. V. (2004). Tetrahedron Lett. 45, 711-714.]). For their biological activity, see: Singh et al. (2007[Singh, C., Kanchan, R., Sharma, U. & Puri, S. K. (2007). J. Med. Chem. 50, 521-527.]); Wennekes et al. (2007[Wennekes, T., van den Berg, R. J. B. H. N., Donker, W., van der Marel, G. A., Donker, W., van der Marel, G. A., Strijland, A., Aerts, J. M. F. G. & Overkleeft, H. S. (2007). J. Org. Chem. 72, 1088-1097.]); Inaba et al. (2007[Inaba, Y., Yamamoto, K., Yoshimoto, N., Matsunawa, M., Uno, S., Yamada, S. & Makishima, M. (2007). Mol. Pharmacol. 71, 1298-1311.]); Kolocouris et al. (2007[Kolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. Lett. 17, 4358-4362.]). Thio­amides are not only widely used as fungicides (Klimesova et al., 1999[Klimesova, V., Svoboda, M., Karel, W. K., Kaustova, J., Buchta, V. & Kralova, K. (1999). Eur. J. Med. Chem. 34, 433-440.]) and herbicides (Bahadir et al., 1979[Bahadir, M., Nitz, S., Pailar, H. & Karte, F. (1979). J. Agric. Food Chem. 27, 815-818.]) but are also valuable inter­mediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]). For the synthesis of the title compound, see: Kaboudin & Elhamifar (2006[Kaboudin, B. & Elhamifar, D. (2006). Synthesis, pp. 224-226.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17NS

  • Mr = 195.32

  • Monoclinic, C 2/c

  • a = 24.255 (2) Å

  • b = 7.9879 (5) Å

  • c = 11.2928 (9) Å

  • β = 100.859 (7)°

  • V = 2148.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.39 × 0.26 × 0.25 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.907, Tmax = 0.939

  • 7423 measured reflections

  • 2002 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.07

  • 2002 reflections

  • 163 parameters

  • 35 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.874 (9) 2.631 (13) 3.4027 (14) 147.9 (16)
N1—H1B⋯S1ii 0.870 (9) 2.492 (10) 3.3485 (14) 168.1 (17)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Adamantane derivatives have found widespread use as biologically active agents to combat various human pathogens. These derivatives include the well known drugs like Rimantadine, Memantine, Adapalene and Adatanserin (Krasnikov et al., 2004). A broad spectrum of biological activities like antimalarial (Singh et al., 2007), glucosylceramide metabolism inhibitors (Wennekes et al., 2007), vitamin D receptor modulators (Inaba et al., 2007) and anti-influenza (Kolocouris et al., 2007), is associated with adamantane containing preparations and compounds. Thioamides, on the other hand, are not only widely used as fungicides (Klimesova et al., 1999) and herbicides (Bahadir et al., 1979) but are also valuable intermediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003). The title compound, adamantane-1-thioamide (1), was synthesized in this laboratory as an intermediate in the synthesis of adamantlythiazolo-oxadiazoles to explore their potential as antitumour agents. The synthesis was accomplished by treating adamantane-1-carbonitrile with P4S10 according to a known procedure (Kaboudin et al., 2006). Here, we are going to report the crystal structure of (1). The crystal structure is stabilized by intermolecular N—H···S, hydrogen-bond interactions.

Related literature top

Adamantane derivatives include well known drugs such as Rimantadine, Memantine, Adapalene and Adatanserin, see: Krasnikov et al. (2004). For their biological activity, see: Singh et al. (2007); Wennekes et al. (2007); Inaba et al. (2007); Kolocouris et al. (2007). Thioamides are not only widely used as fungicides (Klimesova et al., 1999) and herbicides (Bahadir et al., 1979) but are also valuable intermediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003). For the synthesis of the title compound, see: Kaboudin et al. (2006).

Experimental top

A solution of P4S10 (3.1 g, 7.0 mmol.) in ethanol (10 ml) was stirred for 1 h. Adamantane-1-carbonitrile (0.5 g, 3.5 mmol.) was added and the mixture refluxed for 12 h. The mixture was concentrated, water (25 ml) was added and extracted with dichloromethane (3 × 25 ml). The combined organic extracts were dried (anhydrous Na2SO4, concentrated on rotary and refrigerated. The white precipitates separated were recrystallized from ethanol. Yield: 62%; m.p.: 159–162 °C; Rf: 0.40 (n-hexane: ethylacetate; 7:3); IR (νmax, KBr, cm-1): 3424, 3323, 3144, 2907, 2848, 1656, 1449, 1384, 1310, 1240; 1H-NMR (CDCl3): δ 7.9 (1H, b), 7.1 (1H, b), 1.9 (9H, b), 1.71 (6H, b); 13C-NMR (CDCl3): δ 218.8, 45.6, 41.7, 36.2, 28.4; EIMS: (m/z %) 195 (80), 162 (15), 135 (100), 107 (13),93 (20), 79 (23), 60 (13); Elemental analysis for C11H17NS (195.32):C, 67.64; H, 8.77; N, 7.17. Found: C, 67.87; H, 8.88; N, 7.38.

Refinement top

H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). The adamantyl residue is disordered about a twofold rotation axis over two sites with site occupation factors of 0.817 (3) and 0.183 (3). Similarity restraints were applied to keep the bond lengths and angles of the minor occupied site in a reasonable range.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The disordered atoms of the minor occupied site have been omitted for clarity.
[Figure 2] Fig. 2. Molecular structure of the title compound (I) showing both the major and minor occupied positions of the disordered atoms.
Adamantane-1-thioamide top
Crystal data top
C11H17NSF(000) = 848
Mr = 195.32Dx = 1.208 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7109 reflections
a = 24.255 (2) Åθ = 3.5–25.9°
b = 7.9879 (5) ŵ = 0.26 mm1
c = 11.2928 (9) ÅT = 173 K
β = 100.859 (7)°Block, colourless
V = 2148.8 (3) Å30.39 × 0.26 × 0.25 mm
Z = 8
Data collection top
Stoe IPDS-II two-circle
diffractometer
2002 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 2929
Tmin = 0.907, Tmax = 0.939k = 98
7423 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6628P]
where P = (Fo2 + 2Fc2)/3
2002 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.20 e Å3
35 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H17NSV = 2148.8 (3) Å3
Mr = 195.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.255 (2) ŵ = 0.26 mm1
b = 7.9879 (5) ÅT = 173 K
c = 11.2928 (9) Å0.39 × 0.26 × 0.25 mm
β = 100.859 (7)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
2002 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1703 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.939Rint = 0.040
7423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03835 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
2002 reflectionsΔρmin = 0.30 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.21599 (2)0.61925 (7)0.64064 (3)0.0548 (2)
N10.20667 (6)0.55153 (18)0.41220 (11)0.0355 (3)
H1A0.1949 (7)0.495 (2)0.3461 (12)0.041 (5)*
H1B0.2299 (7)0.6339 (18)0.4094 (17)0.044 (5)*
C10.19018 (6)0.51441 (19)0.51351 (12)0.0307 (3)
C20.14709 (6)0.37457 (18)0.51046 (12)0.0280 (3)
C30.09531 (7)0.4503 (2)0.55352 (17)0.0346 (5)0.817 (2)
H3A0.10710.49950.63480.041*0.817 (2)
H3B0.07890.54060.49780.041*0.817 (2)
C40.05109 (9)0.3143 (4)0.5574 (2)0.0449 (6)0.817 (2)
H40.01790.36400.58550.054*0.817 (2)
C50.03278 (11)0.2407 (4)0.4326 (2)0.0535 (7)0.817 (2)
H5A0.00400.15350.43460.064*0.817 (2)
H5B0.01590.32940.37600.064*0.817 (2)
C60.08243 (15)0.1650 (4)0.3893 (3)0.0553 (10)0.817 (2)
H60.06970.11720.30680.066*0.817 (2)
C70.12688 (9)0.3016 (3)0.38385 (17)0.0424 (5)0.817 (2)
H7A0.15910.25290.35340.051*0.817 (2)
H7B0.11040.39160.32790.051*0.817 (2)
C80.17150 (8)0.2349 (3)0.59767 (19)0.0401 (5)0.817 (2)
H8A0.18420.28210.67930.048*0.817 (2)
H8B0.20440.18450.57090.048*0.817 (2)
C90.07646 (14)0.1784 (3)0.6434 (2)0.0466 (6)0.817 (2)
H9A0.04790.09130.64790.056*0.817 (2)
H9B0.08840.22630.72510.056*0.817 (2)
C100.10857 (13)0.0264 (3)0.4743 (3)0.0591 (7)0.817 (2)
H10A0.14150.02100.44600.071*0.817 (2)
H10B0.08090.06450.47560.071*0.817 (2)
C110.12686 (11)0.0991 (3)0.6021 (2)0.0493 (6)0.817 (2)
H110.14290.00840.65940.059*0.817 (2)
C3'0.0918 (3)0.4290 (11)0.4335 (8)0.037 (2)*0.183 (2)
H3'10.09800.46100.35230.045*0.183 (2)
H3'20.07740.52840.47030.045*0.183 (2)
C4'0.0475 (5)0.2869 (14)0.4214 (10)0.046 (3)*0.183 (2)
H4'0.01090.32380.37210.055*0.183 (2)
C5'0.0714 (5)0.1404 (17)0.3637 (12)0.040 (4)*0.183 (2)
H5'10.04290.05030.34890.048*0.183 (2)
H5'20.07940.17580.28460.048*0.183 (2)
C6'0.1241 (4)0.0722 (14)0.4391 (9)0.043 (3)*0.183 (2)
H6'0.13720.02830.39940.052*0.183 (2)
C7'0.1683 (3)0.2123 (10)0.4505 (8)0.039 (2)*0.183 (2)
H7'10.17570.24080.36960.046*0.183 (2)
H7'20.20390.17270.50060.046*0.183 (2)
C8'0.1384 (3)0.3213 (10)0.6373 (7)0.0338 (19)*0.183 (2)
H8'10.12440.41790.67780.041*0.183 (2)
H8'20.17490.28650.68620.041*0.183 (2)
C9'0.0414 (5)0.2430 (18)0.5496 (11)0.057 (4)*0.183 (2)
H9'10.01120.15850.54600.068*0.183 (2)
H9'20.02950.34450.58850.068*0.183 (2)
C10'0.1166 (5)0.0295 (15)0.5663 (11)0.045 (3)*0.183 (2)
H10C0.08970.06450.56260.055*0.183 (2)
H10D0.15300.00840.61360.055*0.183 (2)
C11'0.0957 (5)0.1737 (16)0.6295 (11)0.041 (4)*0.183 (2)
H11'0.08920.14080.71120.049*0.183 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0758 (4)0.0683 (4)0.0212 (2)0.0451 (3)0.01175 (19)0.00661 (18)
N10.0424 (7)0.0430 (8)0.0228 (6)0.0139 (6)0.0104 (5)0.0023 (6)
C10.0332 (7)0.0362 (8)0.0227 (7)0.0052 (6)0.0053 (5)0.0032 (6)
C20.0324 (7)0.0308 (8)0.0207 (6)0.0046 (6)0.0048 (5)0.0004 (5)
C30.0337 (9)0.0358 (10)0.0338 (10)0.0021 (8)0.0052 (7)0.0008 (8)
C40.0373 (11)0.0496 (16)0.0490 (13)0.0057 (11)0.0111 (9)0.0014 (11)
C50.0488 (15)0.0577 (16)0.0497 (15)0.0226 (13)0.0013 (11)0.0048 (12)
C60.078 (2)0.0540 (17)0.0329 (14)0.0292 (15)0.0086 (13)0.0115 (12)
C70.0573 (12)0.0448 (12)0.0262 (9)0.0168 (9)0.0111 (8)0.0075 (8)
C80.0404 (11)0.0374 (11)0.0406 (11)0.0012 (8)0.0025 (8)0.0096 (9)
C90.0510 (16)0.0478 (15)0.0425 (13)0.0167 (12)0.0124 (12)0.0020 (10)
C100.0797 (18)0.0336 (13)0.0666 (19)0.0123 (12)0.0206 (15)0.0110 (12)
C110.0638 (15)0.0329 (12)0.0483 (13)0.0030 (11)0.0032 (11)0.0106 (11)
Geometric parameters (Å, º) top
S1—C11.6780 (14)C9—H9B0.9900
N1—C11.3149 (19)C10—C111.542 (4)
N1—H1A0.874 (9)C10—H10A0.9900
N1—H1B0.870 (9)C10—H10B0.9900
C1—C21.5257 (19)C11—H111.0000
C2—C3'1.518 (7)C3'—C4'1.550 (12)
C2—C81.532 (2)C3'—H3'10.9900
C2—C71.536 (2)C3'—H3'20.9900
C2—C8'1.546 (8)C4'—C5'1.507 (14)
C2—C31.552 (2)C4'—C9'1.524 (14)
C2—C7'1.592 (8)C4'—H4'1.0000
C3—C41.533 (3)C5'—C6'1.498 (13)
C3—H3A0.9900C5'—H5'10.9900
C3—H3B0.9900C5'—H5'20.9900
C4—C91.509 (4)C6'—C10'1.521 (13)
C4—C51.515 (3)C6'—C7'1.538 (12)
C4—H41.0000C6'—H6'1.0000
C5—C61.509 (5)C7'—H7'10.9900
C5—H5A0.9900C7'—H7'20.9900
C5—H5B0.9900C8'—C11'1.561 (12)
C6—C101.523 (4)C8'—H8'10.9900
C6—C71.543 (4)C8'—H8'20.9900
C6—H61.0000C9'—C11'1.553 (14)
C7—H7A0.9900C9'—H9'10.9900
C7—H7B0.9900C9'—H9'20.9900
C8—C111.540 (3)C10'—C11'1.492 (13)
C8—H8A0.9900C10'—H10C0.9900
C8—H8B0.9900C10'—H10D0.9900
C9—C111.526 (4)C11'—H11'1.0000
C9—H9A0.9900
C1—N1—H1A121.5 (13)H9A—C9—H9B108.1
C1—N1—H1B120.4 (13)C6—C10—C11109.2 (2)
H1A—N1—H1B118.0 (18)C6—C10—H10A109.8
N1—C1—C2117.69 (13)C11—C10—H10A109.8
N1—C1—S1120.42 (11)C6—C10—H10B109.8
C2—C1—S1121.89 (11)C11—C10—H10B109.8
C3'—C2—C1109.3 (3)H10A—C10—H10B108.3
C3'—C2—C8140.3 (3)C9—C11—C8109.1 (2)
C1—C2—C8109.80 (12)C9—C11—C10109.7 (2)
C3'—C2—C758.9 (4)C8—C11—C10108.4 (2)
C1—C2—C7113.32 (13)C9—C11—H11109.9
C8—C2—C7109.82 (15)C8—C11—H11109.9
C3'—C2—C8'110.5 (4)C10—C11—H11109.9
C1—C2—C8'113.1 (3)C2—C3'—C4'111.3 (7)
C8—C2—C8'46.1 (3)C2—C3'—H3'1109.4
C7—C2—C8'133.0 (3)C4'—C3'—H3'1109.4
C3'—C2—C352.3 (4)C2—C3'—H3'2109.4
C1—C2—C3107.40 (13)C4'—C3'—H3'2109.4
C8—C2—C3108.66 (14)H3'1—C3'—H3'2108.0
C7—C2—C3107.70 (14)C5'—C4'—C9'110.3 (10)
C8'—C2—C363.8 (3)C5'—C4'—C3'106.9 (9)
C3'—C2—C7'108.1 (5)C9'—C4'—C3'106.0 (9)
C1—C2—C7'109.3 (3)C5'—C4'—H4'111.2
C8—C2—C7'64.1 (3)C9'—C4'—H4'111.2
C7—C2—C7'50.8 (3)C3'—C4'—H4'111.2
C8'—C2—C7'106.3 (5)C6'—C5'—C4'113.1 (10)
C3—C2—C7'142.7 (3)C6'—C5'—H5'1109.0
C4—C3—C2110.17 (16)C4'—C5'—H5'1109.0
C4—C3—H3A109.6C6'—C5'—H5'2109.0
C2—C3—H3A109.6C4'—C5'—H5'2109.0
C4—C3—H3B109.6H5'1—C5'—H5'2107.8
C2—C3—H3B109.6C5'—C6'—C10'112.2 (10)
H3A—C3—H3B108.1C5'—C6'—C7'106.9 (9)
C9—C4—C5109.4 (2)C10'—C6'—C7'106.8 (8)
C9—C4—C3109.02 (19)C5'—C6'—H6'110.3
C5—C4—C3109.4 (2)C10'—C6'—H6'110.3
C9—C4—H4109.7C7'—C6'—H6'110.3
C5—C4—H4109.7C6'—C7'—C2110.6 (6)
C3—C4—H4109.7C6'—C7'—H7'1109.5
C6—C5—C4110.2 (2)C2—C7'—H7'1109.5
C6—C5—H5A109.6C6'—C7'—H7'2109.5
C4—C5—H5A109.6C2—C7'—H7'2109.5
C6—C5—H5B109.6H7'1—C7'—H7'2108.1
C4—C5—H5B109.6C2—C8'—C11'111.1 (6)
H5A—C5—H5B108.1C2—C8'—H8'1109.4
C5—C6—C10110.5 (3)C11'—C8'—H8'1109.4
C5—C6—C7109.6 (2)C2—C8'—H8'2109.4
C10—C6—C7109.2 (3)C11'—C8'—H8'2109.4
C5—C6—H6109.2H8'1—C8'—H8'2108.0
C10—C6—H6109.2C4'—C9'—C11'114.2 (10)
C7—C6—H6109.2C4'—C9'—H9'1108.7
C2—C7—C6109.51 (17)C11'—C9'—H9'1108.7
C2—C7—H7A109.8C4'—C9'—H9'2108.7
C6—C7—H7A109.8C11'—C9'—H9'2108.7
C2—C7—H7B109.8H9'1—C9'—H9'2107.6
C6—C7—H7B109.8C11'—C10'—C6'112.9 (9)
H7A—C7—H7B108.2C11'—C10'—H10C109.0
C2—C8—C11110.19 (15)C6'—C10'—H10C109.0
C2—C8—H8A109.6C11'—C10'—H10D109.0
C11—C8—H8A109.6C6'—C10'—H10D109.0
C2—C8—H8B109.6H10C—C10'—H10D107.8
C11—C8—H8B109.6C10'—C11'—C9'108.9 (10)
H8A—C8—H8B108.1C10'—C11'—C8'109.2 (10)
C4—C9—C11110.8 (2)C9'—C11'—C8'104.2 (9)
C4—C9—H9A109.5C10'—C11'—H11'111.4
C11—C9—H9A109.5C9'—C11'—H11'111.4
C4—C9—H9B109.5C8'—C11'—H11'111.4
C11—C9—H9B109.5
N1—C1—C2—C3'66.3 (4)C4—C9—C11—C860.1 (3)
S1—C1—C2—C3'113.5 (4)C4—C9—C11—C1058.4 (3)
N1—C1—C2—C8120.45 (17)C2—C8—C11—C959.3 (2)
S1—C1—C2—C859.78 (17)C2—C8—C11—C1060.1 (2)
N1—C1—C2—C72.7 (2)C6—C10—C11—C957.2 (3)
S1—C1—C2—C7177.02 (13)C6—C10—C11—C861.8 (3)
N1—C1—C2—C8'170.1 (4)C1—C2—C3'—C4'176.7 (6)
S1—C1—C2—C8'10.1 (4)C8—C2—C3'—C4'13.3 (10)
N1—C1—C2—C3121.57 (16)C7—C2—C3'—C4'70.5 (7)
S1—C1—C2—C358.20 (16)C8'—C2—C3'—C4'58.2 (8)
N1—C1—C2—C7'51.9 (4)C3—C2—C3'—C4'85.9 (7)
S1—C1—C2—C7'128.3 (3)C7'—C2—C3'—C4'57.8 (8)
C3'—C2—C3—C480.9 (4)C2—C3'—C4'—C5'59.7 (10)
C1—C2—C3—C4177.77 (14)C2—C3'—C4'—C9'57.9 (10)
C8—C2—C3—C459.06 (18)C9'—C4'—C5'—C6'51.8 (15)
C7—C2—C3—C459.85 (19)C3'—C4'—C5'—C6'63.0 (13)
C8'—C2—C3—C470.1 (4)C4'—C5'—C6'—C10'53.5 (15)
C7'—C2—C3—C412.4 (6)C4'—C5'—C6'—C7'63.2 (13)
C2—C3—C4—C959.8 (2)C5'—C6'—C7'—C258.7 (10)
C2—C3—C4—C559.8 (2)C10'—C6'—C7'—C261.6 (9)
C9—C4—C5—C659.6 (3)C3'—C2—C7'—C6'57.6 (8)
C3—C4—C5—C659.8 (3)C1—C2—C7'—C6'176.6 (6)
C4—C5—C6—C1060.0 (3)C8—C2—C7'—C6'80.2 (6)
C4—C5—C6—C760.3 (3)C7—C2—C7'—C6'71.8 (6)
C3'—C2—C7—C679.3 (4)C8'—C2—C7'—C6'61.0 (7)
C1—C2—C7—C6178.50 (19)C3—C2—C7'—C6'6.9 (10)
C8—C2—C7—C658.3 (2)C3'—C2—C8'—C11'59.2 (8)
C8'—C2—C7—C610.5 (5)C1—C2—C8'—C11'177.9 (6)
C3—C2—C7—C659.9 (2)C8—C2—C8'—C11'82.1 (7)
C7'—C2—C7—C685.0 (4)C7—C2—C8'—C11'6.8 (9)
C5—C6—C7—C261.0 (3)C3—C2—C8'—C11'83.4 (7)
C10—C6—C7—C260.2 (3)C7'—C2—C8'—C11'57.9 (8)
C3'—C2—C8—C115.9 (6)C5'—C4'—C9'—C11'52.5 (15)
C1—C2—C8—C11175.91 (18)C3'—C4'—C9'—C11'62.8 (13)
C7—C2—C8—C1158.9 (2)C5'—C6'—C10'—C11'55.3 (13)
C8'—C2—C8—C1172.4 (4)C7'—C6'—C10'—C11'61.5 (11)
C3—C2—C8—C1158.7 (2)C6'—C10'—C11'—C9'53.7 (13)
C7'—C2—C8—C1181.6 (4)C6'—C10'—C11'—C8'59.5 (12)
C5—C4—C9—C1159.2 (3)C4'—C9'—C11'—C10'53.6 (14)
C3—C4—C9—C1160.5 (3)C4'—C9'—C11'—C8'62.9 (13)
C5—C6—C10—C1158.5 (3)C2—C8'—C11'—C10'58.0 (10)
C7—C6—C10—C1162.1 (3)C2—C8'—C11'—C9'58.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.87 (1)2.63 (1)3.4027 (14)148 (2)
N1—H1B···S1ii0.87 (1)2.49 (1)3.3485 (14)168 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H17NS
Mr195.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.255 (2), 7.9879 (5), 11.2928 (9)
β (°) 100.859 (7)
V3)2148.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.39 × 0.26 × 0.25
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.907, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
7423, 2002, 1703
Rint0.040
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.07
No. of reflections2002
No. of parameters163
No. of restraints35
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.874 (9)2.631 (13)3.4027 (14)147.9 (16)
N1—H1B···S1ii0.870 (9)2.492 (10)3.3485 (14)168.1 (17)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

MKR is grateful to the HEC-Pakistan for financial support for a PhD program under scholarship No.[ILC–0363104].

References

First citationBahadir, M., Nitz, S., Pailar, H. & Karte, F. (1979). J. Agric. Food Chem. 27, 815–818.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationInaba, Y., Yamamoto, K., Yoshimoto, N., Matsunawa, M., Uno, S., Yamada, S. & Makishima, M. (2007). Mol. Pharmacol. 71, 1298–1311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaboudin, B. & Elhamifar, D. (2006). Synthesis, pp. 224–226.  Web of Science CrossRef Google Scholar
First citationKlimesova, V., Svoboda, M., Karel, W. K., Kaustova, J., Buchta, V. & Kralova, K. (1999). Eur. J. Med. Chem. 34, 433–440.  CrossRef CAS Google Scholar
First citationKolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. Lett. 17, 4358–4362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrasnikov, S. V., Obuchova, T. A., Yasinskii, O. A. & Balakin, K. V. (2004). Tetrahedron Lett. 45, 711–714.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, C., Kanchan, R., Sharma, U. & Puri, S. K. (2007). J. Med. Chem. 50, 521–527.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWennekes, T., van den Berg, R. J. B. H. N., Donker, W., van der Marel, G. A., Donker, W., van der Marel, G. A., Strijland, A., Aerts, J. M. F. G. & Overkleeft, H. S. (2007). J. Org. Chem. 72, 1088–1097.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds