metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-4-bromo-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]phenolato-κ2N,O}copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 13 July 2009; accepted 15 July 2009; online 18 July 2009)

In the title complex, [Cu(C12H7BrClN2O)2], the CuII center is tetra­coordinated by two phenolate O and two azomethine N atoms from two independent bidentate 4-bromo-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]phenolate (L) ligands. In the crystal structure, the CuII atom has a distorted square-planar coordination environment. The inter­planar dihedral angles between the benzene and pyridine rings in the individual ligands are 63.83 (4) and 54.43 (3)°, indicating the pyridine ring to have considerably weaker steric hindrance.

Related literature

For the applications of phenoxy­imines, see: John et al. (2007[John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033-4044.]). For the structures of salen-type bis­oxime complexes, see: Dong et al. (2009a[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009a). Acta Cryst. E65, m802.],b[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009b). Acta Cryst. E65, m803.]). Due to their chelating ability and positive redox potential, many copper(II) complexes are biologically active, see: Karmaka et al. (2007[Karmaka, R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2007). J. Mol. Struct. 826, 75-81.]). For the preparation of (E)-[4-bromo-2-((2-chloro­pyridin-3-ylimino)meth­yl)]phenol, see: Dong et al. (2009c[Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009c). Inorg. Chem. Commun. 12, 234-236.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H7BrClN2O)2]

  • Mr = 684.65

  • Monoclinic, P 21 /c

  • a = 20.406 (2) Å

  • b = 11.6378 (15) Å

  • c = 10.5787 (13) Å

  • β = 90.212 (2)°

  • V = 2512.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 298 K

  • 0.43 × 0.12 × 0.05 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.260, Tmax = 0.814

  • 11575 measured reflections

  • 4426 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.050

  • S = 0.88

  • 4426 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenoxy-imines are a versatile class of ligands that display a truly impressive range of diverse applications spanning from bioinorganic chemistry to coordination chemistry, chemical catalysis, and materials related applications (John et al., 2007). Due to their chelating ability and positive redox potential many copper(II) complexes are generally biologically active (Karmaka et al., 2007). As part of our ongoing research into the complexes between transition metals and phenoxy-imine ligands, we report here the synthesis and crystal structures of the title complex, bis{(E)-[4-bromo-2-((2-chloropyridin-3-ylimino)methyl-κN)] phenolato-κO1}copper(II) (Fig. 1).

In the asymmetric molecule unit of the title complex, the CuII center is tetracoordinated by two phenolic O and two azomethine N atoms from two ligand (L-) units and has a distorted square-planar coordination environment, which is similar to the salen-type bisoxime complexes (Dong et al., 2009a, Dong et al., 2009b). It was observed that all bond lengths are within normal ranges (Allen et al., 1987).

The interplane dihedral angles are found to be as follows: 63.83° between the phenyl ring (C2—C7) and pyridyl ring (N1/C8—C12), 54.43° between phenyl ring (C14—C19) and pyridyl ring (N3/C20—C24), indicating the pyridine ring having a considerable weaker steric hindrance. Besides, the dihedral angle between the coordination plane of O1—Cu1—N2 and O2—Cu1—N4 is 27.72 (3)°, indicating slight distortion toward tetrahedral geometry from the square planar structure.

Related literature top

For the applications of phenoxyimines, see: John et al. (2007). For the structures of salen-type bisoxime complexes, see: Dong et al. (2009a,b). Due to their chelating ability and positive redox

potential, many copper(II) complexes are biologically active, see: Karmaka et al. (2007). For the preparation of (E)-[4-bromo-2-((2-chloropyridin-3-ylimino)methyl)]phenol, see: Dong et al. (2009c). For bond-length data, see: Allen et al. (1987).

Experimental top

(E)-[4-Bromo-2-((2-chloropyridin-3-ylimino)methyl)]phenol(HL) was prepared according to previously reported procedure (Dong et al., 2009c). A blue solution of copper(II) acetate monohydrate (2.6 mg, 0.0013 mmol) in methanol (2 ml) was added dropwise to a pale-yellow solution of HL (8.1 mg, 0.0026 mmol) in methanol (4 ml) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and allowed to stand at room temperature for several days. With evaporation of the solvent, dark-brown needle-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1600 cm-1, ν Ar—O, 1242 cm-1, ν Cu—N, 445 cm-1 and ν Cu—O, 424 cm-1.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Bis{(E)-4-bromo-2-[(2-chloro-3-pyridyl)iminomethyl]phenolato- κ2N,O}copper(II) top
Crystal data top
[Cu(C12H7BrClN2O)2]F(000) = 1340
Mr = 684.65Dx = 1.810 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 20.406 (2) Åθ = 3.5–23.5°
b = 11.6378 (15) ŵ = 4.29 mm1
c = 10.5787 (13) ÅT = 298 K
β = 90.212 (2)°Needle-like, brown
V = 2512.2 (5) Å30.43 × 0.12 × 0.05 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
4426 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1724
Tmin = 0.260, Tmax = 0.814k = 1313
11575 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0002P)2]
where P = (Fo2 + 2Fc2)/3
4426 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C12H7BrClN2O)2]V = 2512.2 (5) Å3
Mr = 684.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.406 (2) ŵ = 4.29 mm1
b = 11.6378 (15) ÅT = 298 K
c = 10.5787 (13) Å0.43 × 0.12 × 0.05 mm
β = 90.212 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
4426 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2340 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 0.814Rint = 0.060
11575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 0.88Δρmax = 0.37 e Å3
4426 reflectionsΔρmin = 0.36 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25248 (3)0.22385 (4)0.41801 (5)0.04108 (16)
Br10.13387 (3)0.36645 (4)0.54348 (6)0.0734 (2)
Br20.35180 (3)0.81346 (4)0.23403 (5)0.06505 (18)
Cl10.37963 (6)0.12525 (11)0.20905 (11)0.0646 (4)
Cl20.20549 (7)0.12485 (9)0.15999 (12)0.0644 (4)
N10.4802 (2)0.1582 (3)0.3542 (4)0.0521 (11)
N20.31148 (17)0.0920 (3)0.4578 (3)0.0363 (9)
N30.0797 (3)0.1474 (4)0.1537 (4)0.0752 (15)
N40.19682 (17)0.3327 (3)0.3208 (3)0.0358 (9)
O10.17657 (13)0.1421 (2)0.4686 (3)0.0435 (8)
O20.32382 (13)0.3273 (2)0.4265 (3)0.0437 (8)
C10.2900 (2)0.0104 (3)0.4797 (3)0.0356 (11)
H10.32170.06660.49350.043*
C20.2227 (2)0.0477 (3)0.4853 (4)0.0366 (12)
C30.1698 (2)0.0308 (4)0.4827 (4)0.0371 (12)
C40.1058 (2)0.0135 (3)0.4983 (4)0.0480 (13)
H40.07020.03640.49820.058*
C50.0954 (2)0.1300 (4)0.5138 (4)0.0551 (14)
H50.05300.15780.52300.066*
C60.1480 (2)0.2060 (3)0.5158 (4)0.0486 (13)
C70.2108 (2)0.1670 (3)0.5022 (4)0.0444 (13)
H70.24570.21850.50410.053*
C80.4174 (2)0.1324 (3)0.3550 (4)0.0378 (12)
C90.3807 (2)0.1104 (3)0.4641 (4)0.0354 (12)
C100.4137 (2)0.1121 (3)0.5773 (4)0.0438 (12)
H100.39160.09600.65200.053*
C110.4796 (2)0.1377 (4)0.5798 (5)0.0547 (14)
H110.50280.13890.65560.066*
C120.5103 (2)0.1615 (4)0.4666 (6)0.0524 (14)
H120.55450.18090.46880.063*
C130.2121 (2)0.4391 (4)0.3010 (4)0.0396 (12)
H130.18020.48510.26360.048*
C140.2736 (2)0.4933 (3)0.3312 (4)0.0353 (11)
C150.3267 (2)0.4341 (4)0.3864 (4)0.0348 (11)
C160.3869 (2)0.4935 (3)0.3971 (4)0.0442 (12)
H160.42260.45690.43460.053*
C170.3941 (2)0.6050 (4)0.3531 (4)0.0505 (14)
H170.43450.64160.35900.061*
C180.3414 (3)0.6615 (3)0.3007 (4)0.0443 (13)
C190.2818 (2)0.6099 (3)0.2905 (4)0.0434 (13)
H190.24640.65030.25720.052*
C200.1335 (2)0.1942 (4)0.2005 (5)0.0523 (14)
C210.1350 (2)0.2933 (4)0.2745 (4)0.0417 (12)
C220.0771 (3)0.3453 (4)0.3016 (5)0.0582 (15)
H220.07570.41030.35260.070*
C230.0194 (3)0.2987 (5)0.2509 (6)0.0788 (18)
H230.02090.33400.26440.095*
C240.0237 (3)0.2009 (6)0.1816 (6)0.093 (2)
H240.01510.16880.15140.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0426 (4)0.0358 (3)0.0447 (4)0.0020 (3)0.0014 (3)0.0047 (3)
Br10.0707 (4)0.0367 (3)0.1127 (5)0.0049 (3)0.0121 (4)0.0083 (3)
Br20.0813 (5)0.0403 (3)0.0736 (4)0.0137 (3)0.0085 (3)0.0061 (3)
Cl10.0733 (10)0.0825 (9)0.0381 (8)0.0144 (8)0.0027 (7)0.0040 (7)
Cl20.0823 (11)0.0519 (7)0.0589 (9)0.0004 (7)0.0031 (7)0.0107 (7)
N10.039 (3)0.066 (3)0.051 (3)0.008 (2)0.009 (2)0.000 (2)
N20.041 (3)0.036 (2)0.033 (2)0.0018 (19)0.0009 (19)0.0046 (18)
N30.072 (4)0.074 (3)0.080 (4)0.023 (3)0.024 (3)0.008 (3)
N40.041 (3)0.035 (2)0.032 (2)0.0039 (19)0.0021 (19)0.0037 (18)
O10.039 (2)0.0334 (16)0.058 (2)0.0003 (15)0.0065 (15)0.0095 (16)
O20.042 (2)0.0348 (16)0.054 (2)0.0035 (15)0.0072 (15)0.0078 (16)
C10.043 (3)0.036 (3)0.028 (3)0.010 (2)0.005 (2)0.001 (2)
C20.034 (3)0.036 (3)0.039 (3)0.003 (2)0.002 (2)0.004 (2)
C30.042 (3)0.037 (3)0.033 (3)0.002 (3)0.005 (2)0.001 (2)
C40.041 (4)0.038 (3)0.065 (4)0.001 (2)0.003 (3)0.006 (3)
C50.035 (3)0.048 (3)0.082 (4)0.008 (3)0.001 (3)0.003 (3)
C60.053 (4)0.032 (3)0.061 (4)0.005 (3)0.004 (3)0.003 (3)
C70.050 (4)0.035 (3)0.048 (3)0.006 (2)0.002 (3)0.001 (2)
C80.045 (3)0.036 (2)0.033 (3)0.006 (2)0.002 (3)0.004 (2)
C90.035 (3)0.034 (3)0.037 (3)0.001 (2)0.001 (3)0.005 (2)
C100.047 (4)0.052 (3)0.032 (3)0.001 (3)0.000 (3)0.008 (3)
C110.046 (4)0.062 (3)0.055 (4)0.005 (3)0.012 (3)0.003 (3)
C120.029 (3)0.051 (3)0.078 (4)0.002 (2)0.009 (3)0.006 (3)
C130.042 (3)0.046 (3)0.031 (3)0.008 (3)0.001 (2)0.008 (2)
C140.038 (3)0.040 (3)0.027 (3)0.000 (3)0.005 (2)0.001 (2)
C150.032 (3)0.043 (3)0.029 (3)0.006 (3)0.005 (2)0.001 (2)
C160.048 (4)0.045 (3)0.040 (3)0.006 (3)0.002 (2)0.003 (2)
C170.048 (4)0.051 (3)0.053 (4)0.018 (3)0.010 (3)0.015 (3)
C180.053 (4)0.032 (3)0.048 (3)0.010 (3)0.007 (3)0.003 (2)
C190.054 (4)0.032 (3)0.044 (3)0.006 (2)0.006 (3)0.002 (2)
C200.054 (4)0.052 (3)0.051 (4)0.017 (3)0.012 (3)0.015 (3)
C210.042 (4)0.045 (3)0.038 (3)0.010 (3)0.007 (3)0.008 (3)
C220.043 (4)0.062 (3)0.070 (4)0.001 (3)0.004 (3)0.009 (3)
C230.048 (4)0.094 (5)0.094 (5)0.001 (4)0.003 (4)0.033 (4)
C240.062 (5)0.106 (6)0.110 (6)0.044 (5)0.039 (4)0.026 (5)
Geometric parameters (Å, º) top
Cu1—O21.891 (3)C6—C71.368 (5)
Cu1—O11.897 (2)C7—H70.9300
Cu1—N41.986 (3)C8—C91.402 (5)
Cu1—N21.994 (3)C9—C101.372 (5)
Br1—C61.912 (4)C10—C111.378 (5)
Br2—C181.916 (4)C10—H100.9300
Cl1—C81.726 (4)C11—C121.381 (5)
Cl2—C201.731 (5)C11—H110.9300
N1—C81.316 (5)C12—H120.9300
N1—C121.336 (6)C13—C141.439 (5)
N2—C11.291 (4)C13—H130.9300
N2—C91.429 (5)C14—C151.410 (5)
N3—C201.320 (5)C14—C191.434 (5)
N3—C241.335 (6)C15—C161.415 (5)
N4—C131.295 (4)C16—C171.387 (5)
N4—C211.427 (5)C16—H160.9300
O1—C31.311 (4)C17—C181.376 (6)
O2—C151.314 (4)C17—H170.9300
C1—C21.442 (5)C18—C191.361 (5)
C1—H10.9300C19—H190.9300
C2—C31.414 (5)C20—C211.395 (6)
C2—C71.421 (5)C21—C221.359 (5)
C3—C41.416 (5)C22—C231.400 (6)
C4—C51.382 (5)C22—H220.9300
C4—H40.9300C23—C241.358 (7)
C5—C61.390 (5)C23—H230.9300
C5—H50.9300C24—H240.9300
O2—Cu1—O1159.31 (12)C9—C10—H10120.2
O2—Cu1—N493.27 (13)C11—C10—H10120.2
O1—Cu1—N489.99 (13)C10—C11—C12118.2 (5)
O2—Cu1—N290.91 (13)C10—C11—H11120.9
O1—Cu1—N292.73 (13)C12—C11—H11120.9
N4—Cu1—N2160.68 (13)N1—C12—C11123.8 (5)
C8—N1—C12116.4 (4)N1—C12—H12118.1
C1—N2—C9117.8 (3)C11—C12—H12118.1
C1—N2—Cu1122.9 (3)N4—C13—C14126.4 (4)
C9—N2—Cu1119.3 (2)N4—C13—H13116.8
C20—N3—C24115.8 (5)C14—C13—H13116.8
C13—N4—C21117.7 (4)C15—C14—C19119.8 (4)
C13—N4—Cu1123.8 (3)C15—C14—C13123.1 (4)
C21—N4—Cu1118.4 (3)C19—C14—C13116.8 (4)
C3—O1—Cu1127.9 (3)O2—C15—C14124.1 (4)
C15—O2—Cu1128.5 (3)O2—C15—C16118.4 (4)
N2—C1—C2127.5 (4)C14—C15—C16117.4 (4)
N2—C1—H1116.2C17—C16—C15121.6 (4)
C2—C1—H1116.2C17—C16—H16119.2
C3—C2—C7120.2 (4)C15—C16—H16119.2
C3—C2—C1122.1 (4)C18—C17—C16119.9 (4)
C7—C2—C1117.5 (4)C18—C17—H17120.0
O1—C3—C2124.0 (4)C16—C17—H17120.0
O1—C3—C4118.1 (4)C19—C18—C17121.3 (4)
C2—C3—C4117.9 (4)C19—C18—Br2118.6 (4)
C5—C4—C3120.8 (4)C17—C18—Br2120.1 (4)
C5—C4—H4119.6C18—C19—C14119.9 (4)
C3—C4—H4119.6C18—C19—H19120.0
C4—C5—C6120.5 (4)C14—C19—H19120.0
C4—C5—H5119.7N3—C20—C21124.6 (5)
C6—C5—H5119.7N3—C20—Cl2114.8 (5)
C7—C6—C5120.7 (4)C21—C20—Cl2120.5 (4)
C7—C6—Br1118.8 (3)C22—C21—C20118.0 (4)
C5—C6—Br1120.4 (4)C22—C21—N4123.6 (4)
C6—C7—C2119.8 (4)C20—C21—N4118.4 (4)
C6—C7—H7120.1C21—C22—C23118.5 (5)
C2—C7—H7120.1C21—C22—H22120.7
N1—C8—C9124.8 (4)C23—C22—H22120.7
N1—C8—Cl1115.9 (3)C24—C23—C22118.4 (6)
C9—C8—Cl1119.3 (4)C24—C23—H23120.8
C10—C9—C8117.0 (4)C22—C23—H23120.8
C10—C9—N2121.6 (4)N3—C24—C23124.6 (6)
C8—C9—N2121.4 (4)N3—C24—H24117.7
C9—C10—C11119.7 (4)C23—C24—H24117.7
O2—Cu1—N2—C1172.5 (3)C1—N2—C9—C1072.8 (5)
O1—Cu1—N2—C112.8 (3)Cu1—N2—C9—C10106.5 (4)
N4—Cu1—N2—C184.9 (5)C1—N2—C9—C8109.8 (4)
O2—Cu1—N2—C96.8 (3)Cu1—N2—C9—C870.8 (4)
O1—Cu1—N2—C9166.4 (3)C8—C9—C10—C111.7 (6)
N4—Cu1—N2—C995.8 (5)N2—C9—C10—C11175.7 (4)
O2—Cu1—N4—C139.1 (3)C9—C10—C11—C120.2 (6)
O1—Cu1—N4—C13150.5 (3)C8—N1—C12—C111.1 (7)
N2—Cu1—N4—C13111.3 (5)C10—C11—C12—N11.8 (7)
O2—Cu1—N4—C21173.9 (3)C21—N4—C13—C14175.0 (4)
O1—Cu1—N4—C2126.6 (3)Cu1—N4—C13—C147.9 (6)
N2—Cu1—N4—C2171.7 (5)N4—C13—C14—C150.9 (7)
O2—Cu1—O1—C3117.9 (4)N4—C13—C14—C19174.6 (4)
N4—Cu1—O1—C3142.8 (4)Cu1—O2—C15—C142.2 (6)
N2—Cu1—O1—C318.0 (4)Cu1—O2—C15—C16176.8 (3)
O1—Cu1—O2—C1594.3 (5)C19—C14—C15—O2180.0 (3)
N4—Cu1—O2—C154.4 (3)C13—C14—C15—O26.6 (6)
N2—Cu1—O2—C15165.5 (3)C19—C14—C15—C161.0 (6)
C9—N2—C1—C2176.4 (4)C13—C14—C15—C16172.4 (4)
Cu1—N2—C1—C22.9 (6)O2—C15—C16—C17177.9 (4)
N2—C1—C2—C38.4 (7)C14—C15—C16—C171.2 (6)
N2—C1—C2—C7175.7 (4)C15—C16—C17—C181.8 (6)
Cu1—O1—C3—C212.6 (6)C16—C17—C18—C190.2 (7)
Cu1—O1—C3—C4168.5 (3)C16—C17—C18—Br2177.7 (3)
C7—C2—C3—O1179.4 (4)C17—C18—C19—C142.0 (7)
C1—C2—C3—O13.6 (7)Br2—C18—C19—C14175.5 (3)
C7—C2—C3—C40.5 (6)C15—C14—C19—C182.6 (6)
C1—C2—C3—C4175.3 (4)C13—C14—C19—C18171.3 (4)
O1—C3—C4—C5179.9 (4)C24—N3—C20—C210.3 (7)
C2—C3—C4—C50.9 (6)C24—N3—C20—Cl2178.6 (4)
C3—C4—C5—C60.8 (7)N3—C20—C21—C220.6 (7)
C4—C5—C6—C70.2 (7)Cl2—C20—C21—C22178.8 (3)
C4—C5—C6—Br1177.7 (3)N3—C20—C21—N4178.7 (4)
C5—C6—C7—C20.3 (7)Cl2—C20—C21—N43.0 (5)
Br1—C6—C7—C2178.1 (3)C13—N4—C21—C2253.4 (6)
C3—C2—C7—C60.1 (7)Cu1—N4—C21—C22123.8 (4)
C1—C2—C7—C6176.1 (4)C13—N4—C21—C20128.5 (4)
C12—N1—C8—C91.1 (6)Cu1—N4—C21—C2054.3 (5)
C12—N1—C8—Cl1178.6 (3)C20—C21—C22—C231.8 (7)
N1—C8—C9—C102.5 (6)N4—C21—C22—C23179.9 (4)
Cl1—C8—C9—C10177.1 (3)C21—C22—C23—C242.8 (8)
N1—C8—C9—N2174.9 (4)C20—N3—C24—C231.4 (9)
Cl1—C8—C9—N25.4 (5)C22—C23—C24—N32.7 (9)

Experimental details

Crystal data
Chemical formula[Cu(C12H7BrClN2O)2]
Mr684.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)20.406 (2), 11.6378 (15), 10.5787 (13)
β (°) 90.212 (2)
V3)2512.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.43 × 0.12 × 0.05
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.260, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
11575, 4426, 2340
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.050, 0.88
No. of reflections4426
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009a). Acta Cryst. E65, m802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009b). Acta Cryst. E65, m803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009c). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohn, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmaka, R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2007). J. Mol. Struct. 826, 75–81.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds