organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Methyl-3-nitro­phen­yl)methanol

aDepartment of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, People's Republic of China
*Correspondence e-mail: njjhs@163.com

(Received 9 June 2009; accepted 10 July 2009; online 18 July 2009)

The asymmetric unit of the title compound, C8H9NO3, contains two crystallographically independent mol­ecules, whose aromatic rings are oriented at a dihedral angle of 83.29 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

The title compound is an intermediate in the synthesis of the monomer 2-methyl-3-nitrobenzaldehyde, utilized to synthesize ergoline derivatives which have potential use in the treatment of Parkinson's disease, see: Kozikowski et al. (1980[Kozikowski, A. P., Ishida, H. & Chen, Y.-Y. (1980). J. Org. Chem. 45, 3350-3352.]). For a related structure, see: Wu et al. (1994[Wu, Y. M., Ge, Y. H. & Xue, Z. J. (1994). Synth. Met. 62, 265-271.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO3

  • Mr = 167.16

  • Monoclinic, P 21 /n

  • a = 13.601 (3) Å

  • b = 7.8650 (16) Å

  • c = 15.433 (3) Å

  • β = 92.73 (3)°

  • V = 1649.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.990

  • 3123 measured reflections

  • 2990 independent reflections

  • 1783 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.189

  • S = 1.00

  • 2990 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.82 1.97 2.725 (3) 153
O4—H4B⋯O1ii 0.82 1.95 2.706 (3) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y-1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The tittle compound is an important intermediate used to synthesize the monomer 2-methyl-3-nitrobenzaldehyde, which can be utilized to synthesize ergoline derivatives and it has been reported to have some useful physiological and pharmacological functions to parkinson's disease (Kozikowski et al., 1980). We report herein the crystal structure of the title compound, which is of interest to us in the field.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C10-C15) are, of course, planar. The dihedral angle between them is 83.29 (3)°. Atoms N1, C1, C8 and N2, C9, C16 are -0.006 (3), 0.029 (3), -0.022 (3) and 0.077 (3), -0.075 (3), -0.076 (3) Å away from the adjacent ring planes, respectively.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Kozikowski et al. (1980). For a related structure, see: Wu et al. (1994). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to a literature method (Wu et al., 1994). Crystals suitable for X-ray analysis were obtained by slow evaporation of methanol for about 20 d.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic and methylene H and x = 1.5 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(2-Methyl-3-nitrophenyl)methanol top
Crystal data top
C8H9NO3F(000) = 704
Mr = 167.16Dx = 1.347 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.601 (3) Åθ = 9–13°
b = 7.8650 (16) ŵ = 0.10 mm1
c = 15.433 (3) ÅT = 294 K
β = 92.73 (3)°Block, colorless
V = 1649.0 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.969, Tmax = 0.990l = 1818
3123 measured reflections3 standard reflections every 120 min
2990 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
2990 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H9NO3V = 1649.0 (6) Å3
Mr = 167.16Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.601 (3) ŵ = 0.10 mm1
b = 7.8650 (16) ÅT = 294 K
c = 15.433 (3) Å0.30 × 0.20 × 0.10 mm
β = 92.73 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.969, Tmax = 0.9903 standard reflections every 120 min
3123 measured reflections intensity decay: 1%
2990 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
2990 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16054 (17)0.8063 (3)0.23189 (13)0.0674 (6)
H1A0.16090.71490.25750.101*
O20.1306 (2)0.3449 (4)0.12458 (19)0.0991 (9)
O30.2061 (3)0.2898 (4)0.0108 (2)0.1103 (10)
O40.71669 (15)0.0476 (3)0.16390 (14)0.0660 (6)
H4B0.74570.04310.17060.099*
O50.3487 (3)0.4236 (4)0.2226 (2)0.1256 (13)
O60.4004 (3)0.4885 (4)0.0995 (2)0.1141 (11)
N10.1592 (2)0.3846 (4)0.0546 (2)0.0673 (8)
N20.3911 (2)0.3892 (4)0.1578 (2)0.0730 (8)
C10.0769 (3)0.8143 (4)0.1800 (2)0.0688 (9)
H1B0.05150.92960.18090.083*
H1C0.02580.74050.20480.083*
C20.1004 (2)0.7622 (4)0.0875 (2)0.0537 (8)
C30.1075 (2)0.8874 (4)0.0244 (2)0.0617 (8)
H3A0.09771.00010.04100.074*
C40.1285 (2)0.8523 (4)0.0614 (2)0.0647 (9)
H4A0.13240.93920.10230.078*
C50.1437 (2)0.6856 (4)0.0859 (2)0.0606 (8)
H5A0.15680.65760.14390.073*
C60.1391 (2)0.5609 (4)0.0230 (2)0.0524 (7)
C70.1176 (2)0.5903 (4)0.06465 (19)0.0507 (7)
C80.1098 (3)0.4514 (4)0.1320 (2)0.0739 (10)
H8A0.12350.34360.10490.111*
H8B0.04450.45020.15840.111*
H8C0.15650.47200.17560.111*
C90.6502 (3)0.0372 (5)0.0897 (2)0.0699 (9)
H9A0.67540.04450.04920.084*
H9B0.64710.14700.06110.084*
C100.5492 (2)0.0142 (4)0.11181 (18)0.0530 (8)
C110.4806 (3)0.1136 (4)0.1233 (2)0.0635 (9)
H11A0.49840.22580.11330.076*
C120.3874 (3)0.0797 (4)0.1490 (2)0.0685 (9)
H12A0.34340.16770.15790.082*
C130.3602 (2)0.0863 (4)0.1612 (2)0.0638 (9)
H13A0.29740.11240.17860.077*
C140.4266 (2)0.2128 (4)0.14749 (19)0.0546 (8)
C150.5225 (2)0.1851 (4)0.12415 (18)0.0530 (7)
C160.5962 (3)0.3269 (5)0.1152 (3)0.0820 (11)
H16A0.56510.43410.12550.123*
H16B0.65020.31110.15680.123*
H16C0.62030.32570.05780.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0856 (16)0.0542 (13)0.0632 (13)0.0045 (12)0.0132 (12)0.0046 (10)
O20.109 (2)0.094 (2)0.095 (2)0.0099 (17)0.0212 (17)0.0380 (17)
O30.147 (3)0.0667 (18)0.119 (2)0.0378 (18)0.025 (2)0.0038 (16)
O40.0626 (13)0.0569 (13)0.0782 (15)0.0068 (11)0.0007 (11)0.0009 (11)
O50.160 (3)0.108 (3)0.110 (2)0.049 (2)0.018 (2)0.0217 (19)
O60.147 (3)0.0529 (16)0.143 (3)0.0101 (16)0.009 (2)0.0303 (17)
N10.0624 (17)0.0586 (18)0.081 (2)0.0018 (15)0.0003 (15)0.0078 (16)
N20.079 (2)0.0530 (18)0.086 (2)0.0051 (15)0.0099 (17)0.0042 (17)
C10.070 (2)0.067 (2)0.069 (2)0.0005 (18)0.0034 (17)0.0058 (18)
C20.0487 (16)0.0512 (18)0.0615 (18)0.0024 (14)0.0054 (14)0.0001 (15)
C30.0614 (19)0.0427 (17)0.082 (2)0.0028 (15)0.0089 (17)0.0032 (16)
C40.065 (2)0.058 (2)0.071 (2)0.0007 (16)0.0051 (17)0.0141 (17)
C50.0591 (18)0.069 (2)0.0537 (17)0.0004 (17)0.0001 (14)0.0035 (16)
C60.0454 (16)0.0469 (17)0.0652 (19)0.0016 (13)0.0056 (13)0.0029 (15)
C70.0482 (16)0.0456 (17)0.0587 (18)0.0029 (13)0.0065 (13)0.0034 (14)
C80.095 (3)0.057 (2)0.070 (2)0.0078 (19)0.0098 (19)0.0105 (17)
C90.078 (2)0.072 (2)0.0598 (19)0.0006 (19)0.0034 (17)0.0053 (17)
C100.0611 (19)0.0521 (18)0.0451 (16)0.0034 (15)0.0044 (13)0.0012 (13)
C110.076 (2)0.0417 (17)0.071 (2)0.0028 (16)0.0163 (17)0.0019 (15)
C120.062 (2)0.051 (2)0.091 (3)0.0143 (17)0.0128 (18)0.0143 (17)
C130.0557 (18)0.060 (2)0.074 (2)0.0022 (16)0.0072 (15)0.0117 (16)
C140.066 (2)0.0386 (16)0.0583 (18)0.0020 (15)0.0084 (15)0.0021 (13)
C150.0636 (19)0.0471 (17)0.0475 (16)0.0077 (15)0.0061 (13)0.0039 (13)
C160.079 (2)0.065 (2)0.103 (3)0.0218 (19)0.005 (2)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.423 (4)C6—C71.390 (4)
O1—H1A0.8200C7—C81.508 (4)
O2—N11.207 (3)C8—H8A0.9600
O3—N11.208 (3)C8—H8B0.9600
O4—C91.427 (4)C8—H8C0.9600
O4—H4B0.8200C9—C101.487 (4)
O5—N21.209 (4)C9—H9A0.9700
O6—N21.203 (4)C9—H9B0.9700
N1—C61.491 (4)C10—C111.388 (4)
N2—C141.480 (4)C10—C151.408 (4)
C1—C21.505 (4)C11—C121.372 (5)
C1—H1B0.9700C11—H11A0.9300
C1—H1C0.9700C12—C131.373 (4)
C2—C31.385 (4)C12—H12A0.9300
C2—C71.414 (4)C13—C141.367 (4)
C3—C41.369 (4)C13—H13A0.9300
C3—H3A0.9300C14—C151.387 (4)
C4—C51.378 (4)C15—C161.510 (4)
C4—H4A0.9300C16—H16A0.9600
C5—C61.379 (4)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C1—O1—H1A109.5H8A—C8—H8B109.5
C9—O4—H4B109.5C7—C8—H8C109.5
O2—N1—O3122.8 (3)H8A—C8—H8C109.5
O2—N1—C6118.2 (3)H8B—C8—H8C109.5
O3—N1—C6119.0 (3)O4—C9—C10112.9 (3)
O5—N2—C14118.0 (3)O4—C9—H9A109.0
O6—N2—O5123.1 (3)O4—C9—H9B109.0
O6—N2—C14118.7 (3)C10—C9—H9A109.0
O1—C1—C2112.5 (3)C10—C9—H9B109.0
O1—C1—H1B109.1H9A—C9—H9B107.8
O1—C1—H1C109.1C11—C10—C15119.6 (3)
C2—C1—H1B109.1C11—C10—C9117.8 (3)
C2—C1—H1C109.1C15—C10—C9122.5 (3)
H1B—C1—H1C107.8C12—C11—C10122.1 (3)
C3—C2—C7120.0 (3)C12—C11—H11A118.9
C3—C2—C1118.5 (3)C10—C11—H11A118.9
C7—C2—C1121.5 (3)C11—C12—C13118.9 (3)
C4—C3—C2122.7 (3)C11—C12—H12A120.5
C4—C3—H3A118.6C13—C12—H12A120.5
C2—C3—H3A118.6C14—C13—C12119.1 (3)
C3—C4—C5118.7 (3)C14—C13—H13A120.5
C3—C4—H4A120.7C12—C13—H13A120.5
C5—C4—H4A120.7C13—C14—C15124.2 (3)
C4—C5—C6118.8 (3)C13—C14—N2116.4 (3)
C4—C5—H5A120.6C15—C14—N2119.4 (3)
C6—C5—H5A120.6C14—C15—C10115.9 (3)
C5—C6—C7124.6 (3)C14—C15—C16123.0 (3)
C5—C6—N1115.4 (3)C10—C15—C16121.1 (3)
C7—C6—N1120.0 (3)C15—C16—H16A109.5
C6—C7—C2115.2 (3)C15—C16—H16B109.5
C6—C7—C8123.7 (3)H16A—C16—H16B109.5
C2—C7—C8121.0 (3)C15—C16—H16C109.5
C7—C8—H8A109.5H16A—C16—H16C109.5
C7—C8—H8B109.5H16B—C16—H16C109.5
O1—C1—C2—C3105.3 (3)O4—C9—C10—C1195.5 (3)
O1—C1—C2—C773.1 (4)O4—C9—C10—C1582.3 (4)
C7—C2—C3—C41.7 (5)C15—C10—C11—C121.9 (5)
C1—C2—C3—C4179.9 (3)C9—C10—C11—C12175.9 (3)
C2—C3—C4—C50.4 (5)C10—C11—C12—C131.9 (5)
C3—C4—C5—C61.3 (5)C11—C12—C13—C140.0 (5)
C4—C5—C6—C71.7 (5)C12—C13—C14—C152.1 (5)
C4—C5—C6—N1178.4 (3)C12—C13—C14—N2177.2 (3)
O2—N1—C6—C536.1 (4)O6—N2—C14—C13126.6 (4)
O3—N1—C6—C5141.4 (3)O5—N2—C14—C1349.0 (4)
O2—N1—C6—C7143.8 (3)O6—N2—C14—C1552.8 (4)
O3—N1—C6—C738.7 (4)O5—N2—C14—C15131.7 (4)
C5—C6—C7—C20.4 (4)C13—C14—C15—C102.1 (4)
N1—C6—C7—C2179.6 (3)N2—C14—C15—C10177.2 (3)
C5—C6—C7—C8177.9 (3)C13—C14—C15—C16175.8 (3)
N1—C6—C7—C82.0 (4)N2—C14—C15—C164.9 (5)
C3—C2—C7—C61.3 (4)C11—C10—C15—C140.1 (4)
C1—C2—C7—C6179.6 (3)C9—C10—C15—C14177.8 (3)
C3—C2—C7—C8179.7 (3)C11—C10—C15—C16177.8 (3)
C1—C2—C7—C82.0 (4)C9—C10—C15—C160.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.972.725 (3)153
O4—H4B···O1ii0.821.952.706 (3)153
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC8H9NO3
Mr167.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.601 (3), 7.8650 (16), 15.433 (3)
β (°) 92.73 (3)
V3)1649.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3123, 2990, 1783
Rint0.020
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.189, 1.00
No. of reflections2990
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.972.725 (3)153
O4—H4B···O1ii0.821.952.706 (3)153
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKozikowski, A. P., Ishida, H. & Chen, Y.-Y. (1980). J. Org. Chem. 45, 3350–3352.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. M., Ge, Y. H. & Xue, Z. J. (1994). Synth. Met. 62, 265–271.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds