metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2-amino-6-methyl­pyridinium) hexa­chloridobismuthate(III) chloride monohydrate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Biological & Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fzt713@163.com

(Received 23 June 2009; accepted 1 July 2009; online 8 July 2009)

The asymmetric unit of the title compound, (C6H9N2)4[BiCl6]Cl·H2O, contains four protonated 2-amino-6-methyl­pyridine (HAMP) cations and two-halves of two [BiCl6]3− anions, together with one water mol­ecule and one chloride anion. The BiIII atoms are hexa­coordinated by Cl atoms, forming distorted octa­hedral geometries. In the crystal structure, intra­molecular O—H⋯Cl and N—H⋯Cl, and inter­molecular O—H⋯Cl and N—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Inuzuka & Fujimoto (1986[Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta Part A, 42, 929-937.], 1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.]); Ishikawa et al. (2002[Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305-2312.]); Jin et al. (2000[Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195-198.], 2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.], 2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Ren et al. (2002[Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 33, 38-41.]); Rivas et al. (2003[Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339-3349.]); Salwa et al. (2008[Salwa, N., Fatma, Z. & Hafed, E. F. (2008). J. Chem. Crystallogr. 38, 729-732.]); Xu et al. (2006[Xu, G., Fu, M. L., Cai, L. Z., Zhang, Z. J., Guo, G. C. & Huang, J. S. (2006). Chin. J. Struct. Chem. 25, 338-342.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)4[BiCl6]Cl·H2O

  • Mr = 911.75

  • Triclinic, [P \overline 1]

  • a = 10.3345 (7) Å

  • b = 10.7605 (7) Å

  • c = 17.2673 (11) Å

  • α = 100.3370 (10)°

  • β = 103.7370 (10)°

  • γ = 99.2280 (10)°

  • V = 1793.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.47 mm−1

  • T = 273 K

  • 0.42 × 0.31 × 0.25 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.153, Tmax = 0.185 (expected range = 0.211–0.255)

  • 9489 measured reflections

  • 6240 independent reflections

  • 5171 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.07

  • 6240 reflections

  • 373 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WB⋯Cl7 0.825 2.28 3.051 (3) 157
N2—H2B⋯Cl5 0.86 2.65 3.432 (3) 151
N4—H4B⋯Cl2 0.86 2.48 3.307 (3) 163
N5—H5⋯Cl7 0.86 2.21 3.059 (3) 168
N7—H7⋯Cl4 0.86 2.38 3.204 (3) 161
N8—H8B⋯Cl1 0.86 2.51 3.343 (3) 164
O1—H1WA⋯Cl3i 0.828 2.49 3.290 (3) 163
N1—H1⋯O1ii 0.86 1.91 2.774 (3) 177
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decade, a series of 2-amino-substituted pyridine compounds have been investigated in which the 2-aminopyridines act as ligands or protonated cations (Ren et al., 2002; Rivas et al., 2003; Luque et al., 1997; Albrecht et al., 2003). Among them, the tautomerism phenomenon of 2-aminopyridine derivatives has been proved by x-ray diffraction, such as 2-amino-6-methylpyridinium chloride (Jin et al., 2000) and 2-amino-6-methylpyridinium neoabietate (Jin et al., 2005). All the above studies provide important references to further research into 2-amino pyridines. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains four protonated 2-amino-6-methyl-pyridine (HAMP) cations and two-halves of crystallographically independent [BiCl6]3- anions, together with one water molecule and one chloride anion. The bismuth atoms are hexa-coordinated by chloride atoms, forming distorted-octahedral geometries. Intramolecular O-H···Cl and N-H···Cl interactions (Table 1) link the cations, anions and water molecule.

The average value of Bi—Cl bond distance [2.7061 Å] observed in the [BiCl6]3- anion is shorter than the corresponding average values of [2.7130 Å] (Salwa et al., 2008) and [2.7150 Å] (Xu et al., 2006). In the cation, the N4—C11 bond [1.334 (5) Å] is shorter than the N3—C11 [1.341 (5) Å] and N3—C7 [1.358 (5) Å] bonds, and the C10—C11 [1.384 (6) Å] and C8—C9 [1.402 (6) Å] bonds are significantly longer than C9—C10 [1.362 (7) Å] and C7—C8 [1.342 (6) Å] bonds, in which they are similar to those in the HAMP cation (C6H9N2)2[Sb2Cl6O] (Feng et al., 2007). In contrast, in the solid state structure of 2-amino-6-methyl-pyridine (AMP), the N—C bond out of the ring is clearly longer than that in the ring (Nahringbauer et al., 1977). The geometric features of HAMP cation [N7/N8/C19/C24] resemble those observed in other 2-aminopyridine structures (Jin et al., 2001) that are believed to be involved in amine-imine tautomerism (Inuzuka et al., 1986; Inuzuka et al., 1990; Ishikawa et al., 2002). Similar features are also observed in other HAMP cations.

In the crystal structure (Fig. 2), intramolecular O-H···Cl and N-H···Cl and intermolecular O-H···Cl and N-H···O interactions (Table 1) link the molecules into a three-dimensional network.

Related literature top

For related structures, see: Albrecht et al. (2003); Feng et al. (2007); Inuzuka & Fujimoto (1986, 1990); Ishikawa et al. (2002); Jin et al. (2000, 2001, 2005); Luque et al. (1997); Nahringbauer et al. (1977); Ren et al. (2002); Rivas et al. (2003); Salwa et al. (2008); Xu et al. (2006).

Experimental top

For the preparation of the title compound, AMP, aqueous HCl and BiCl3 in a molar ratio of 4:4:1 were mixed and dissolved in water (20 ml). The mixture was stirred and heated until a clear solution was resulted. Crystals suitable for X-ray analysis were obtained by gradual evaporation of excess water over a period of one week at 300 K. Analysis: C 31.65; H 4.13; N 12.32. calc. for Bi1C24H34N8O1Cl7: C 31.61; H 4.17; N 12.29 IR Spectrum (KBr, cm-1): 3411(s), 3295 (s), 3195 (m), 3090 (m), 1656 (versus), 1630 (w), 1565 (w), 1474 (w), 1392 (m), 1309 (m), 1174 (w), 1042 (w), 997 (w), 793 (m), 715 (w), 612 (w), 564 (w), 421 (m).

Refinement top

H atoms were positioned geometrically with O-H = 0.8249 and 0.8278 Å (for H2O), N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram viewed down along the a axis. Hydrogen bonds are shown as dashed lines.
Tetrakis(2-amino-6-methylpyridinium) hexachloridobismuthate(III) chloride monohydrate top
Crystal data top
(C6H9N2)4[BiCl6]Cl·H2OZ = 2
Mr = 911.75F(000) = 896.0
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3345 (7) ÅCell parameters from 3117 reflections
b = 10.7605 (7) Åθ = 2.2–25.1°
c = 17.2673 (11) ŵ = 5.47 mm1
α = 100.337 (1)°T = 273 K
β = 103.737 (1)°Block, colorless
γ = 99.228 (1)°0.42 × 0.31 × 0.25 mm
V = 1793.1 (2) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
6240 independent reflections
Radiation source: fine-focus sealed tube5171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1012
Tmin = 0.153, Tmax = 0.185k = 912
9489 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5382P]
where P = (Fo2 + 2Fc2)/3
6240 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = 1.13 e Å3
Crystal data top
(C6H9N2)4[BiCl6]Cl·H2Oγ = 99.228 (1)°
Mr = 911.75V = 1793.1 (2) Å3
Triclinic, P1Z = 2
a = 10.3345 (7) ÅMo Kα radiation
b = 10.7605 (7) ŵ = 5.47 mm1
c = 17.2673 (11) ÅT = 273 K
α = 100.337 (1)°0.42 × 0.31 × 0.25 mm
β = 103.737 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
6240 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5171 reflections with I > 2σ(I)
Tmin = 0.153, Tmax = 0.185Rint = 0.016
9489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.55 e Å3
6240 reflectionsΔρmin = 1.13 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50000.50000.50000.03208 (7)
Bi20.50000.50000.00000.03407 (7)
Cl10.76385 (11)0.55587 (11)0.49688 (6)0.0503 (3)
Cl20.46967 (13)0.73844 (10)0.48394 (7)0.0537 (3)
Cl30.42723 (11)0.42048 (10)0.33422 (6)0.0489 (3)
Cl40.56519 (12)0.32481 (10)0.08902 (7)0.0573 (3)
Cl50.33494 (12)0.56458 (11)0.09478 (7)0.0547 (3)
Cl60.70316 (12)0.68084 (10)0.10950 (7)0.0599 (3)
Cl70.88297 (16)0.15531 (15)0.23702 (9)0.0826 (4)
O11.1851 (4)0.1659 (3)0.3096 (2)0.0857 (11)
H1WB1.11290.18120.28490.103*
H1WA1.24970.22920.32650.103*
N10.1776 (4)0.0607 (4)0.1493 (3)0.0592 (11)
H10.17670.09270.19850.071*
N20.2421 (5)0.2693 (4)0.1378 (3)0.0810 (13)
H2A0.24250.29630.18780.097*
H2B0.26290.32380.10950.097*
N30.5100 (4)0.8575 (3)0.20673 (19)0.0474 (9)
H3A0.51450.79110.17220.057*
N40.4851 (5)0.7216 (4)0.2933 (2)0.0781 (14)
H4A0.49000.65880.25630.094*
H4B0.47470.70790.33920.094*
N50.8447 (4)0.0458 (4)0.3837 (3)0.0502 (9)
H50.86070.06690.34070.060*
N60.8249 (5)0.2543 (4)0.4248 (3)0.0840 (14)
H6D0.84030.26840.38000.101*
H6E0.81120.31550.45930.101*
N70.8615 (3)0.4698 (3)0.2053 (2)0.0421 (8)
H70.78610.44460.16720.050*
N80.7323 (4)0.4673 (4)0.2964 (2)0.0664 (11)
H8A0.66040.44260.25560.080*
H8B0.72510.47840.34560.080*
C10.2094 (5)0.1432 (6)0.1040 (3)0.0618 (13)
C20.2063 (7)0.0900 (8)0.0237 (4)0.094 (2)
H20.22860.14350.01000.112*
C30.1711 (9)0.0385 (10)0.0048 (5)0.124 (3)
H30.16410.07350.05930.149*
C40.1446 (9)0.1207 (8)0.0466 (6)0.130 (3)
H40.12590.20990.02740.156*
C50.1466 (6)0.0699 (6)0.1232 (4)0.0808 (17)
C60.1129 (8)0.1460 (6)0.1820 (5)0.126 (3)
H6A0.12190.08850.23330.189*
H6B0.17410.20380.19020.189*
H6C0.02090.19510.16060.189*
C70.4938 (5)0.8408 (4)0.2794 (2)0.0474 (10)
C80.4871 (5)0.9476 (5)0.3355 (3)0.0513 (11)
H80.47660.93980.38660.062*
C90.4962 (5)1.0642 (5)0.3144 (3)0.0547 (12)
H90.49141.13660.35130.066*
C100.5125 (5)1.0763 (4)0.2382 (3)0.0510 (11)
H100.51851.15650.22470.061*
C110.5198 (5)0.9730 (4)0.1841 (3)0.0452 (10)
C120.5398 (6)0.9723 (5)0.1016 (3)0.0676 (14)
H12A0.54100.88620.07530.101*
H12B0.62481.02900.10690.101*
H12C0.46651.00140.06920.101*
C130.8223 (5)0.1368 (5)0.4407 (3)0.0536 (12)
C140.7972 (6)0.1029 (6)0.5099 (3)0.0726 (16)
H140.78200.16380.55040.087*
C150.7949 (6)0.0189 (8)0.5181 (4)0.086 (2)
H150.77790.04170.56470.103*
C160.8170 (6)0.1111 (6)0.4591 (5)0.084 (2)
H160.81410.19540.46550.101*
C170.8431 (5)0.0771 (5)0.3914 (4)0.0673 (15)
C180.8685 (7)0.1648 (6)0.3227 (4)0.110 (3)
H18A0.88420.11790.28230.166*
H18B0.79060.23470.29840.166*
H18C0.94710.19880.34270.166*
C190.8552 (4)0.4883 (4)0.2832 (2)0.0434 (10)
C200.9768 (5)0.5280 (4)0.3444 (3)0.0513 (11)
H200.97650.54240.39910.062*
C211.0970 (5)0.5458 (5)0.3242 (3)0.0513 (11)
H211.17900.57070.36530.062*
C221.0979 (5)0.5268 (4)0.2419 (3)0.0482 (11)
H221.18000.54080.22820.058*
C230.9793 (4)0.4882 (4)0.1830 (3)0.0428 (10)
C240.9655 (5)0.4629 (6)0.0929 (3)0.0738 (15)
H24A0.87070.43640.06330.111*
H24B1.01210.39570.07830.111*
H24C1.00480.54030.07930.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.03694 (12)0.03611 (12)0.02651 (11)0.00931 (9)0.01195 (8)0.00979 (8)
Bi20.03917 (13)0.03067 (12)0.02879 (11)0.00442 (9)0.00502 (9)0.00606 (8)
Cl10.0429 (6)0.0620 (7)0.0507 (6)0.0078 (5)0.0165 (5)0.0224 (5)
Cl20.0791 (8)0.0442 (6)0.0486 (6)0.0211 (5)0.0280 (6)0.0170 (5)
Cl30.0524 (6)0.0586 (7)0.0340 (5)0.0077 (5)0.0125 (5)0.0090 (4)
Cl40.0568 (7)0.0446 (6)0.0610 (7)0.0003 (5)0.0039 (5)0.0237 (5)
Cl50.0553 (7)0.0571 (7)0.0534 (6)0.0082 (5)0.0265 (5)0.0047 (5)
Cl60.0538 (7)0.0436 (6)0.0631 (7)0.0017 (5)0.0073 (5)0.0026 (5)
Cl70.0804 (10)0.0984 (11)0.0720 (9)0.0159 (8)0.0196 (8)0.0314 (8)
O10.075 (3)0.089 (3)0.078 (2)0.007 (2)0.016 (2)0.009 (2)
N10.054 (2)0.054 (3)0.070 (3)0.0043 (19)0.021 (2)0.014 (2)
N20.101 (4)0.066 (3)0.091 (3)0.015 (3)0.046 (3)0.033 (3)
N30.077 (3)0.0354 (19)0.0299 (17)0.0145 (18)0.0157 (17)0.0055 (14)
N40.133 (4)0.054 (3)0.047 (2)0.009 (3)0.024 (2)0.022 (2)
N50.050 (2)0.041 (2)0.058 (2)0.0123 (17)0.0093 (19)0.0108 (18)
N60.113 (4)0.050 (3)0.098 (4)0.029 (3)0.040 (3)0.015 (2)
N70.0369 (19)0.053 (2)0.0365 (18)0.0087 (16)0.0089 (15)0.0119 (16)
N80.052 (2)0.096 (3)0.058 (2)0.011 (2)0.027 (2)0.021 (2)
C10.047 (3)0.073 (4)0.071 (3)0.008 (2)0.025 (3)0.021 (3)
C20.082 (5)0.130 (7)0.071 (4)0.004 (4)0.037 (4)0.023 (4)
C30.112 (6)0.144 (8)0.083 (5)0.019 (6)0.043 (5)0.037 (5)
C40.146 (8)0.089 (6)0.125 (7)0.025 (5)0.059 (6)0.035 (5)
C50.072 (4)0.059 (4)0.101 (5)0.003 (3)0.021 (3)0.013 (3)
C60.143 (7)0.078 (5)0.148 (7)0.016 (4)0.036 (6)0.046 (5)
C70.056 (3)0.047 (3)0.039 (2)0.006 (2)0.013 (2)0.0141 (19)
C80.056 (3)0.067 (3)0.031 (2)0.013 (2)0.015 (2)0.007 (2)
C90.057 (3)0.051 (3)0.052 (3)0.020 (2)0.015 (2)0.004 (2)
C100.065 (3)0.040 (3)0.048 (3)0.015 (2)0.013 (2)0.008 (2)
C110.052 (3)0.041 (2)0.045 (2)0.012 (2)0.014 (2)0.014 (2)
C120.106 (4)0.063 (3)0.047 (3)0.025 (3)0.035 (3)0.023 (2)
C130.048 (3)0.048 (3)0.059 (3)0.011 (2)0.008 (2)0.006 (2)
C140.058 (3)0.099 (5)0.059 (3)0.018 (3)0.014 (3)0.015 (3)
C150.060 (4)0.117 (6)0.086 (5)0.010 (4)0.013 (3)0.056 (4)
C160.062 (4)0.055 (4)0.132 (6)0.007 (3)0.006 (4)0.047 (4)
C170.055 (3)0.043 (3)0.097 (4)0.008 (2)0.009 (3)0.016 (3)
C180.131 (6)0.067 (4)0.119 (5)0.042 (4)0.024 (5)0.020 (4)
C190.046 (2)0.046 (2)0.044 (2)0.0137 (19)0.017 (2)0.0166 (19)
C200.056 (3)0.062 (3)0.035 (2)0.012 (2)0.008 (2)0.015 (2)
C210.042 (3)0.062 (3)0.047 (3)0.011 (2)0.003 (2)0.019 (2)
C220.039 (2)0.062 (3)0.047 (3)0.014 (2)0.014 (2)0.016 (2)
C230.041 (2)0.051 (3)0.042 (2)0.0134 (19)0.0153 (19)0.0137 (19)
C240.064 (3)0.112 (5)0.040 (3)0.009 (3)0.017 (2)0.009 (3)
Geometric parameters (Å, º) top
Bi1—Cl1i2.7121 (11)C3—C41.401 (12)
Bi1—Cl12.7121 (11)C3—H30.9300
Bi1—Cl22.6888 (10)C4—C51.331 (10)
Bi1—Cl2i2.6888 (10)C4—H40.9300
Bi1—Cl3i2.7175 (10)C5—C61.484 (9)
Bi1—Cl32.7175 (10)C6—H6A0.9600
Bi2—Cl42.7066 (10)C6—H6B0.9600
Bi2—Cl52.7146 (10)C6—H6C0.9600
Bi2—Cl5ii2.7146 (10)C7—C81.386 (6)
Bi2—Cl6ii2.6932 (10)C8—C91.364 (7)
Bi2—Cl62.6932 (11)C8—H80.9300
Bi2—Cl4ii2.7066 (10)C9—C101.390 (7)
O1—H1WA0.8278C9—H90.9300
O1—H1WB0.8249C10—C111.342 (6)
N1—C11.336 (6)C10—H100.9300
N1—C51.357 (7)C11—C121.487 (6)
N1—H10.8600C12—H12A0.9600
N2—C11.331 (6)C12—H12B0.9600
N2—H2A0.8600C12—H12C0.9600
N2—H2B0.8600C13—C141.379 (8)
N3—C71.344 (5)C14—C151.340 (9)
N3—C111.363 (5)C14—H140.9300
N3—H3A0.8600C15—C161.376 (10)
N4—C71.340 (5)C15—H150.9300
N4—H4A0.8600C16—C171.358 (9)
N4—H4B0.8600C16—H160.9300
N5—C131.348 (6)C17—C181.481 (8)
N5—C171.350 (6)C18—H18A0.9600
N5—H50.8600C18—H18B0.9600
N6—C131.338 (6)C18—H18C0.9600
N6—H6D0.8600C19—C201.384 (6)
N6—H6E0.8600C20—C211.362 (7)
N7—C191.341 (5)C20—H200.9300
N7—C231.358 (5)C21—C221.402 (6)
N7—H70.8600C21—H210.9300
N8—C191.334 (5)C22—C231.342 (6)
N8—H8A0.8600C22—H220.9300
N8—H8B0.8600C23—C241.498 (6)
C1—C21.392 (8)C24—H24A0.9600
C2—C31.340 (11)C24—H24B0.9600
C2—H20.9300C24—H24C0.9600
Cl2—Bi1—Cl2i180.0C5—C6—H6A109.5
Cl2—Bi1—Cl1i88.75 (3)C5—C6—H6B109.5
Cl2i—Bi1—Cl1i91.25 (3)H6A—C6—H6B109.5
Cl2—Bi1—Cl191.25 (3)C5—C6—H6C109.5
Cl2i—Bi1—Cl188.75 (3)H6A—C6—H6C109.5
Cl1i—Bi1—Cl1180.0H6B—C6—H6C109.5
Cl2—Bi1—Cl3i90.89 (3)N4—C7—N3117.9 (4)
Cl2i—Bi1—Cl3i89.11 (3)N4—C7—C8123.9 (4)
Cl1i—Bi1—Cl3i88.60 (3)N3—C7—C8118.2 (4)
Cl1—Bi1—Cl3i91.40 (3)C9—C8—C7118.7 (4)
Cl2—Bi1—Cl389.11 (3)C9—C8—H8120.6
Cl2i—Bi1—Cl390.89 (3)C7—C8—H8120.6
Cl1i—Bi1—Cl391.40 (3)C8—C9—C10120.8 (4)
Cl1—Bi1—Cl388.60 (3)C8—C9—H9119.6
Cl3i—Bi1—Cl3180.0C10—C9—H9119.6
Cl6ii—Bi2—Cl6180.00 (5)C11—C10—C9120.5 (4)
Cl6ii—Bi2—Cl4ii89.13 (3)C11—C10—H10119.8
Cl6—Bi2—Cl4ii90.87 (3)C9—C10—H10119.8
Cl6ii—Bi2—Cl490.87 (3)C10—C11—N3117.5 (4)
Cl6—Bi2—Cl489.13 (3)C10—C11—C12126.2 (4)
Cl4ii—Bi2—Cl4180.00 (3)N3—C11—C12116.3 (4)
Cl6ii—Bi2—Cl592.40 (4)C11—C12—H12A109.5
Cl6—Bi2—Cl587.60 (4)C11—C12—H12B109.5
Cl4ii—Bi2—Cl591.47 (4)H12A—C12—H12B109.5
Cl4—Bi2—Cl588.53 (4)C11—C12—H12C109.5
Cl6ii—Bi2—Cl5ii87.60 (4)H12A—C12—H12C109.5
Cl6—Bi2—Cl5ii92.40 (4)H12B—C12—H12C109.5
Cl4ii—Bi2—Cl5ii88.53 (4)N6—C13—N5116.6 (5)
Cl4—Bi2—Cl5ii91.47 (4)N6—C13—C14125.0 (5)
Cl5—Bi2—Cl5ii180.00 (3)N5—C13—C14118.5 (5)
H1WB—O1—H1WA114.5C15—C14—C13119.2 (6)
C1—N1—C5124.6 (5)C15—C14—H14120.4
C1—N1—H1117.7C13—C14—H14120.4
C5—N1—H1117.7C14—C15—C16121.6 (6)
C1—N2—H2A120.0C14—C15—H15119.2
C1—N2—H2B120.0C16—C15—H15119.2
H2A—N2—H2B120.0C17—C16—C15119.0 (6)
C7—N3—C11124.3 (4)C17—C16—H16120.5
C7—N3—H3A117.9C15—C16—H16120.5
C11—N3—H3A117.9N5—C17—C16118.8 (6)
C7—N4—H4A120.0N5—C17—C18115.7 (6)
C7—N4—H4B120.0C16—C17—C18125.4 (6)
H4A—N4—H4B120.0C17—C18—H18A109.5
C13—N5—C17122.8 (5)C17—C18—H18B109.5
C13—N5—H5118.6H18A—C18—H18B109.5
C17—N5—H5118.6C17—C18—H18C109.5
C13—N6—H6D120.0H18A—C18—H18C109.5
C13—N6—H6E120.0H18B—C18—H18C109.5
H6D—N6—H6E120.0N8—C19—N7117.9 (4)
C19—N7—C23124.2 (4)N8—C19—C20124.4 (4)
C19—N7—H7117.9N7—C19—C20117.7 (4)
C23—N7—H7117.9C21—C20—C19119.7 (4)
C19—N8—H8A120.0C21—C20—H20120.1
C19—N8—H8B120.0C19—C20—H20120.1
H8A—N8—H8B120.0C20—C21—C22120.3 (4)
N2—C1—N1118.7 (5)C20—C21—H21119.8
N2—C1—C2124.3 (6)C22—C21—H21119.8
N1—C1—C2117.0 (6)C23—C22—C21119.5 (4)
C3—C2—C1119.8 (7)C23—C22—H22120.3
C3—C2—H2120.1C21—C22—H22120.3
C1—C2—H2120.1C22—C23—N7118.6 (4)
C2—C3—C4120.8 (7)C22—C23—C24125.0 (4)
C2—C3—H3119.6N7—C23—C24116.3 (4)
C4—C3—H3119.6C23—C24—H24A109.5
C5—C4—C3119.4 (7)C23—C24—H24B109.5
C5—C4—H4120.3H24A—C24—H24B109.5
C3—C4—H4120.3C23—C24—H24C109.5
C4—C5—N1118.3 (7)H24A—C24—H24C109.5
C4—C5—C6124.6 (7)H24B—C24—H24C109.5
N1—C5—C6117.0 (6)
C5—N1—C1—N2177.8 (5)C17—N5—C13—N6179.1 (5)
C5—N1—C1—C21.9 (8)C17—N5—C13—C140.3 (7)
N2—C1—C2—C3179.6 (7)N6—C13—C14—C15178.8 (5)
N1—C1—C2—C30.7 (10)N5—C13—C14—C150.5 (8)
C1—C2—C3—C43.6 (13)C13—C14—C15—C160.0 (9)
C2—C3—C4—C54.1 (14)C14—C15—C16—C170.7 (10)
C3—C4—C5—N11.6 (12)C13—N5—C17—C160.4 (8)
C3—C4—C5—C6176.5 (8)C13—N5—C17—C18179.4 (5)
C1—N1—C5—C41.4 (10)C15—C16—C17—N50.9 (9)
C1—N1—C5—C6179.6 (6)C15—C16—C17—C18179.8 (6)
C11—N3—C7—N4179.8 (4)C23—N7—C19—N8179.6 (4)
C11—N3—C7—C80.3 (7)C23—N7—C19—C200.4 (6)
N4—C7—C8—C9179.6 (5)N8—C19—C20—C21179.5 (4)
N3—C7—C8—C90.5 (7)N7—C19—C20—C210.4 (7)
C7—C8—C9—C100.3 (7)C19—C20—C21—C221.3 (7)
C8—C9—C10—C110.0 (7)C20—C21—C22—C231.4 (7)
C9—C10—C11—N30.2 (6)C21—C22—C23—N70.5 (6)
C9—C10—C11—C12178.7 (5)C21—C22—C23—C24179.3 (5)
C7—N3—C11—C100.0 (7)C19—N7—C23—C220.4 (6)
C7—N3—C11—C12179.0 (4)C19—N7—C23—C24179.8 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WB···Cl70.832.283.051 (3)157
N2—H2B···Cl50.862.653.432 (3)151
N4—H4B···Cl20.862.483.307 (3)163
N5—H5···Cl70.862.213.059 (3)168
N7—H7···Cl40.862.383.204 (3)161
N8—H8B···Cl10.862.513.343 (3)164
O1—H1WA···Cl3iii0.832.493.290 (3)163
N1—H1···O1iv0.861.912.774 (3)177
Symmetry codes: (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)4[BiCl6]Cl·H2O
Mr911.75
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.3345 (7), 10.7605 (7), 17.2673 (11)
α, β, γ (°)100.337 (1), 103.737 (1), 99.228 (1)
V3)1793.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.47
Crystal size (mm)0.42 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.153, 0.185
No. of measured, independent and
observed [I > 2σ(I)] reflections
9489, 6240, 5171
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.07
No. of reflections6240
No. of parameters373
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 1.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WB···Cl70.8252.283.051 (3)157
N2—H2B···Cl50.862.653.432 (3)151
N4—H4B···Cl20.862.483.307 (3)163
N5—H5···Cl70.862.213.059 (3)168
N7—H7···Cl40.862.383.204 (3)161
N8—H8B···Cl10.862.513.343 (3)164
O1—H1WA···Cl3i0.8282.493.290 (3)163
N1—H1···O1ii0.861.912.774 (3)177
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta Part A, 42, 929–937.  CrossRef Web of Science Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975.  CrossRef CAS Web of Science Google Scholar
First citationIshikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationJin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRen, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 33, 38–41.  Google Scholar
First citationRivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.  Web of Science CSD CrossRef Google Scholar
First citationSalwa, N., Fatma, Z. & Hafed, E. F. (2008). J. Chem. Crystallogr. 38, 729–732.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Fu, M. L., Cai, L. Z., Zhang, Z. J., Guo, G. C. & Huang, J. S. (2006). Chin. J. Struct. Chem. 25, 338–342.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds