organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-(4-fluoro­benzyl­­idene)indan-1-one

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 26 June 2009; accepted 3 July 2009; online 18 July 2009)

In the mol­ecule of the title compound, C16H10BrFO, the indane ring system is planar with a maximum deviation of 0.020 (3) Å. An intra­molecular C—H⋯O inter­action results in the formation of a planar ring, which is oriented at dihedral angles of 2.24 (3) and 2.34 (3)° with respect to the adjacent rings. ππ contacts between the benzene and indane rings [centroid–centroid distances = 3.699 (1) and 3.786 (1)Å] may stabilize the crystal structure.

Related literature

For a related structure, see: Deeni & Ravi (2001[Deeni, B. & Ravi, M. R. (2001). Tetrahedron Lett. 42, 3025-3027.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10BrFO

  • Mr = 317.15

  • Triclinic, [P \overline 1]

  • a = 7.3580 (15) Å

  • b = 7.4630 (15) Å

  • c = 13.140 (3) Å

  • α = 101.45 (3)°

  • β = 96.80 (3)°

  • γ = 111.72 (3)°

  • V = 642.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 294 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.740, Tmax = 0.856

  • 2518 measured reflections

  • 2319 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.137

  • S = 1.00

  • 2319 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O 0.93 2.14 2.972 (8) 149

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some derivatives of 2,3-dihydro-1H-inden-1-one alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15) are, of course, planar and the dihedral angles between them are A/B = 4.49 (3), A/C = 5.44 (3) and B/C = 0.96 (3) °. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar ring (O/C3/C4/C7-C9/H3A), which is oriented with respect to the adjacent rings A and B at dihedral angles of 2.24 (3) and 2.34 (3) °, respectively. The indane ring system is planar with a maximum deviation of -0.020 (3) Å for atom C9. Atoms Br, O and C7 are 0.026 (3), -0.066 (3) and 0.075 (3) Å away from the plane of the indane ring system, respectively.

In the crystal structure, the ππ contacts between the benzene and the indane rings, Cg2—Cg1i and Cg1—Cg3ii [symmetry codes: (i) 1 - x, 2 - y, -z, (ii) 1 - x, 1 - y, -z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.699 (1) and 3.786 (1) Å, respectively.

Related literature top

For a related structure, see: Deeni & Ravi (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

4-fluoro-benzaldehyde (10 mmol), 4-bromo-2,3-dihydro-1H-inden-1-one (10 mmol), anhydrous ethanol (10 ml) and 5 drops of piperidine were mixed in a three necked flask (50 ml). The flask was placed in a microwave synthesis system and irradiated for 7 min at 373 K with power 400 W. Then, the reaction mixture was slowly added with shaking to water (100 ml) and left to stand overnight. The precipitate was filtered, washed with water and dried (Deeni & Ravi, 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-Bromo-2-(4-fluorobenzylidene)indan-1-one top
Crystal data top
C16H10BrFOZ = 2
Mr = 317.15F(000) = 316
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3580 (15) ÅCell parameters from 25 reflections
b = 7.4630 (15) Åθ = 9–13°
c = 13.140 (3) ŵ = 3.20 mm1
α = 101.45 (3)°T = 294 K
β = 96.80 (3)°Block, colorless
γ = 111.72 (3)°0.10 × 0.10 × 0.05 mm
V = 642.2 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.740, Tmax = 0.856l = 1515
2518 measured reflections3 standard reflections every 120 min
2319 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
2319 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H10BrFOγ = 111.72 (3)°
Mr = 317.15V = 642.2 (3) Å3
Triclinic, P1Z = 2
a = 7.3580 (15) ÅMo Kα radiation
b = 7.4630 (15) ŵ = 3.20 mm1
c = 13.140 (3) ÅT = 294 K
α = 101.45 (3)°0.10 × 0.10 × 0.05 mm
β = 96.80 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1351 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.740, Tmax = 0.8563 standard reflections every 120 min
2518 measured reflections intensity decay: 1%
2319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
2319 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.47010 (11)0.25337 (12)0.59830 (5)0.0759 (3)
O0.2276 (6)0.2064 (7)1.0423 (3)0.0688 (12)
F0.8344 (6)0.2939 (6)1.4682 (2)0.0883 (12)
C10.7931 (11)0.2919 (9)1.3633 (4)0.0618 (17)
C20.6046 (11)0.2666 (9)1.3199 (4)0.0657 (18)
H2A0.50710.25161.36040.079*
C30.5620 (9)0.2638 (9)1.2136 (4)0.0558 (16)
H3A0.43480.24751.18230.067*
C40.7092 (9)0.2854 (8)1.1535 (4)0.0483 (14)
C50.8976 (9)0.3109 (9)1.2025 (4)0.0586 (16)
H5A0.99790.32721.16390.070*
C60.9387 (10)0.3124 (9)1.3084 (5)0.0678 (18)
H6A1.06480.32731.34070.081*
C70.6811 (9)0.2884 (8)1.0409 (4)0.0543 (15)
H7A0.79860.31461.01560.065*
C80.5240 (8)0.2619 (8)0.9659 (4)0.0467 (14)
C90.3131 (9)0.2200 (8)0.9680 (4)0.0497 (15)
C100.2123 (9)0.1972 (8)0.8595 (4)0.0449 (13)
C110.0132 (10)0.1497 (9)0.8219 (4)0.0621 (17)
H11A0.07770.12540.86630.075*
C120.0493 (10)0.1387 (9)0.7156 (4)0.0642 (17)
H12A0.18270.10930.68860.077*
C130.0868 (10)0.1714 (9)0.6507 (4)0.0607 (17)
H13A0.04420.16460.58000.073*
C140.2830 (10)0.2135 (8)0.6883 (4)0.0510 (15)
C150.3494 (9)0.2285 (8)0.7946 (4)0.0474 (14)
C160.5512 (8)0.2711 (9)0.8538 (4)0.0515 (15)
H16A0.64600.40250.85380.062*
H16B0.59870.17200.82280.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0960 (6)0.1065 (6)0.0373 (4)0.0458 (5)0.0289 (3)0.0263 (3)
O0.063 (3)0.110 (4)0.033 (2)0.030 (3)0.0189 (19)0.022 (2)
F0.117 (3)0.104 (3)0.0362 (19)0.036 (3)0.0016 (19)0.0279 (19)
C10.085 (5)0.061 (4)0.029 (3)0.022 (4)0.000 (3)0.011 (3)
C20.087 (5)0.075 (5)0.034 (3)0.029 (4)0.016 (3)0.018 (3)
C30.063 (4)0.070 (4)0.033 (3)0.028 (4)0.005 (3)0.011 (3)
C40.058 (4)0.048 (4)0.033 (3)0.017 (3)0.008 (3)0.008 (3)
C50.055 (4)0.068 (4)0.041 (3)0.017 (3)0.003 (3)0.009 (3)
C60.069 (5)0.078 (5)0.050 (4)0.027 (4)0.005 (3)0.019 (3)
C70.060 (4)0.064 (4)0.035 (3)0.020 (3)0.015 (3)0.013 (3)
C80.052 (4)0.058 (4)0.028 (3)0.020 (3)0.013 (3)0.010 (3)
C90.063 (4)0.055 (4)0.031 (3)0.023 (3)0.017 (3)0.008 (3)
C100.053 (4)0.052 (4)0.032 (3)0.024 (3)0.009 (3)0.010 (2)
C110.066 (5)0.081 (5)0.041 (3)0.032 (4)0.017 (3)0.015 (3)
C120.063 (4)0.087 (5)0.047 (4)0.040 (4)0.004 (3)0.010 (3)
C130.077 (5)0.084 (5)0.031 (3)0.045 (4)0.007 (3)0.016 (3)
C140.077 (5)0.055 (4)0.028 (3)0.033 (3)0.015 (3)0.011 (3)
C150.068 (4)0.042 (3)0.031 (3)0.023 (3)0.009 (3)0.005 (2)
C160.060 (4)0.060 (4)0.030 (3)0.018 (3)0.016 (3)0.011 (3)
Geometric parameters (Å, º) top
Br—C141.898 (6)C8—C91.470 (8)
O—C91.224 (6)C8—C161.521 (7)
F—C11.371 (6)C9—C101.473 (7)
C1—C61.341 (9)C10—C111.375 (8)
C1—C21.365 (8)C10—C151.382 (7)
C2—C31.389 (7)C11—C121.394 (7)
C2—H2A0.9300C11—H11A0.9300
C3—C41.395 (8)C12—C131.376 (8)
C3—H3A0.9300C12—H12A0.9300
C4—C51.385 (7)C13—C141.364 (8)
C4—C71.476 (7)C13—H13A0.9300
C5—C61.385 (7)C14—C151.393 (7)
C5—H5A0.9300C15—C161.480 (7)
C6—H6A0.9300C16—H16A0.9700
C7—C81.352 (7)C16—H16B0.9700
C7—H7A0.9300
C6—C1—C2123.3 (5)C8—C9—C10107.1 (4)
C6—C1—F118.5 (6)C11—C10—C15122.0 (5)
C2—C1—F118.1 (6)C11—C10—C9128.3 (5)
C1—C2—C3118.3 (6)C15—C10—C9109.7 (5)
C1—C2—H2A120.9C10—C11—C12118.4 (6)
C3—C2—H2A120.9C10—C11—H11A120.8
C2—C3—C4120.3 (6)C12—C11—H11A120.8
C2—C3—H3A119.8C13—C12—C11119.9 (6)
C4—C3—H3A119.8C13—C12—H12A120.1
C5—C4—C3118.4 (5)C11—C12—H12A120.1
C5—C4—C7116.8 (5)C14—C13—C12121.2 (5)
C3—C4—C7124.7 (5)C14—C13—H13A119.4
C4—C5—C6120.9 (6)C12—C13—H13A119.4
C4—C5—H5A119.5C13—C14—C15119.9 (5)
C6—C5—H5A119.5C13—C14—Br121.3 (4)
C1—C6—C5118.7 (6)C15—C14—Br118.8 (5)
C1—C6—H6A120.7C10—C15—C14118.5 (5)
C5—C6—H6A120.7C10—C15—C16111.1 (4)
C8—C7—C4134.8 (5)C14—C15—C16130.3 (5)
C8—C7—H7A112.6C15—C16—C8104.5 (4)
C4—C7—H7A112.6C15—C16—H16A110.8
C7—C8—C9132.6 (5)C8—C16—H16A110.8
C7—C8—C16119.9 (5)C15—C16—H16B110.8
C9—C8—C16107.5 (4)C8—C16—H16B110.8
O—C9—C8129.6 (5)H16A—C16—H16B108.9
O—C9—C10123.4 (5)
C6—C1—C2—C30.6 (10)O—C9—C10—C15177.6 (5)
F—C1—C2—C3179.8 (5)C8—C9—C10—C151.8 (6)
C1—C2—C3—C40.3 (9)C15—C10—C11—C121.8 (9)
C2—C3—C4—C50.5 (9)C9—C10—C11—C12179.1 (5)
C2—C3—C4—C7178.8 (5)C10—C11—C12—C131.2 (9)
C3—C4—C5—C60.8 (9)C11—C12—C13—C140.4 (10)
C7—C4—C5—C6179.3 (5)C12—C13—C14—C151.4 (9)
C2—C1—C6—C51.0 (10)C12—C13—C14—Br178.7 (5)
F—C1—C6—C5179.9 (5)C11—C10—C15—C140.8 (9)
C4—C5—C6—C11.1 (10)C9—C10—C15—C14180.0 (5)
C5—C4—C7—C8176.9 (6)C11—C10—C15—C16178.2 (5)
C3—C4—C7—C84.8 (11)C9—C10—C15—C160.9 (7)
C4—C7—C8—C90.7 (12)C13—C14—C15—C100.9 (8)
C4—C7—C8—C16178.4 (6)Br—C14—C15—C10179.3 (4)
C7—C8—C9—O3.4 (11)C13—C14—C15—C16179.7 (6)
C16—C8—C9—O177.5 (6)Br—C14—C15—C160.5 (8)
C7—C8—C9—C10177.3 (6)C10—C15—C16—C80.2 (6)
C16—C8—C9—C101.9 (6)C14—C15—C16—C8178.7 (5)
O—C9—C10—C113.3 (10)C7—C8—C16—C15178.0 (5)
C8—C9—C10—C11177.4 (6)C9—C8—C16—C151.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.142.972 (8)149

Experimental details

Crystal data
Chemical formulaC16H10BrFO
Mr317.15
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3580 (15), 7.4630 (15), 13.140 (3)
α, β, γ (°)101.45 (3), 96.80 (3), 111.72 (3)
V3)642.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.740, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
2518, 2319, 1351
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.137, 1.00
No. of reflections2319
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.142.972 (8)149.00
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDeeni, B. & Ravi, M. R. (2001). Tetrahedron Lett. 42, 3025–3027.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds