organic compounds
2,3-Dimethyl-6-nitro-2H-indazole
aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bSchool of Pharmaceutical Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com
In the molecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the intermolecular C—H⋯O interactions link the molecules into centrosymmetric dimers, forming R22(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure.
Related literature
For a related structure, see: Xu et al. (1999). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536809025410/hk2724sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025410/hk2724Isup2.hkl
For the preparation of the title compound, metallic sodium (3.22 g) was dissolved in regurgitant 2-propanol (140 ml). Then, the solution was added to 3-methyl-6-nitro-1H-indazole (13 g) and iodomethane (30 g) was added in small portions. The mixture was refluxed for 5 h. The suspension was cooled to room temperature, filtered and washed with 2-propanol to give yellow solid (yield; 12 g) (Xu et al., 1999). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C9H9N3O2 | Z = 2 |
Mr = 191.19 | F(000) = 200 |
Triclinic, P1 | Dx = 1.427 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5800 (13) Å | Cell parameters from 25 reflections |
b = 7.2050 (14) Å | θ = 9–13° |
c = 10.752 (2) Å | µ = 0.11 mm−1 |
α = 75.07 (3)° | T = 294 K |
β = 74.67 (3)° | Block, colorless |
γ = 66.73 (3)° | 0.30 × 0.20 × 0.10 mm |
V = 444.81 (19) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1292 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 25.3°, θmin = 2.0° |
ω/2θ scans | h = 0→7 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→8 |
Tmin = 0.969, Tmax = 0.990 | l = −12→12 |
1756 measured reflections | 3 standard reflections every 120 min |
1606 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.08P)2 + 0.235P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1606 reflections | Δρmax = 0.32 e Å−3 |
129 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.059 (12) |
C9H9N3O2 | γ = 66.73 (3)° |
Mr = 191.19 | V = 444.81 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5800 (13) Å | Mo Kα radiation |
b = 7.2050 (14) Å | µ = 0.11 mm−1 |
c = 10.752 (2) Å | T = 294 K |
α = 75.07 (3)° | 0.30 × 0.20 × 0.10 mm |
β = 74.67 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1292 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.031 |
Tmin = 0.969, Tmax = 0.990 | 3 standard reflections every 120 min |
1756 measured reflections | intensity decay: 1% |
1606 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.32 e Å−3 |
1606 reflections | Δρmin = −0.25 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2155 (5) | 0.7495 (5) | −0.3831 (2) | 0.1020 (9) | |
O2 | −0.1339 (4) | 0.7845 (4) | −0.33747 (19) | 0.0803 (7) | |
N1 | −0.2315 (3) | 0.7731 (3) | 0.25319 (18) | 0.0469 (5) | |
N2 | −0.3309 (3) | 0.7997 (3) | 0.15107 (18) | 0.0479 (5) | |
N3 | 0.0392 (4) | 0.7648 (3) | −0.3051 (2) | 0.0611 (6) | |
C1 | −0.3707 (5) | 0.7880 (5) | 0.3829 (2) | 0.0660 (8) | |
H1A | −0.5144 | 0.8941 | 0.3758 | 0.099* | |
H1B | −0.2979 | 0.8202 | 0.4368 | 0.099* | |
H1C | −0.3915 | 0.6594 | 0.4218 | 0.099* | |
C2 | 0.1367 (5) | 0.6977 (4) | 0.3176 (3) | 0.0601 (7) | |
H2B | 0.0456 | 0.7087 | 0.4032 | 0.090* | |
H2C | 0.2098 | 0.7971 | 0.2929 | 0.090* | |
H2D | 0.2482 | 0.5625 | 0.3186 | 0.090* | |
C3 | −0.0080 (4) | 0.7362 (3) | 0.2216 (2) | 0.0432 (6) | |
C4 | −0.1582 (3) | 0.7777 (3) | 0.0489 (2) | 0.0390 (5) | |
C5 | −0.1637 (4) | 0.7888 (3) | −0.0830 (2) | 0.0446 (6) | |
H5A | −0.2966 | 0.8160 | −0.1108 | 0.054* | |
C6 | 0.0376 (4) | 0.7573 (3) | −0.1678 (2) | 0.0462 (6) | |
C7 | 0.2431 (4) | 0.7224 (4) | −0.1315 (2) | 0.0517 (6) | |
H7A | 0.3741 | 0.7057 | −0.1943 | 0.062* | |
C8 | 0.2482 (4) | 0.7134 (3) | −0.0049 (2) | 0.0470 (6) | |
H8A | 0.3819 | 0.6910 | 0.0204 | 0.056* | |
C9 | 0.0474 (3) | 0.7388 (3) | 0.0874 (2) | 0.0387 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1021 (19) | 0.150 (2) | 0.0491 (12) | −0.0512 (17) | 0.0174 (12) | −0.0311 (13) |
O2 | 0.1002 (17) | 0.0986 (16) | 0.0521 (12) | −0.0371 (13) | −0.0217 (11) | −0.0183 (11) |
N1 | 0.0480 (11) | 0.0573 (12) | 0.0389 (10) | −0.0226 (9) | −0.0063 (8) | −0.0089 (8) |
N2 | 0.0436 (11) | 0.0606 (12) | 0.0427 (11) | −0.0218 (9) | −0.0069 (8) | −0.0098 (9) |
N3 | 0.0804 (16) | 0.0572 (13) | 0.0453 (12) | −0.0255 (11) | −0.0051 (12) | −0.0129 (10) |
C1 | 0.0621 (17) | 0.095 (2) | 0.0422 (14) | −0.0311 (15) | 0.0000 (12) | −0.0173 (13) |
C2 | 0.0642 (16) | 0.0669 (17) | 0.0564 (15) | −0.0235 (13) | −0.0231 (13) | −0.0092 (12) |
C3 | 0.0475 (13) | 0.0402 (12) | 0.0459 (12) | −0.0177 (9) | −0.0112 (10) | −0.0077 (9) |
C4 | 0.0400 (11) | 0.0369 (11) | 0.0427 (12) | −0.0162 (9) | −0.0058 (9) | −0.0085 (9) |
C5 | 0.0501 (13) | 0.0444 (12) | 0.0442 (13) | −0.0207 (10) | −0.0117 (10) | −0.0061 (9) |
C6 | 0.0611 (14) | 0.0384 (12) | 0.0389 (12) | −0.0202 (10) | −0.0034 (10) | −0.0079 (9) |
C7 | 0.0465 (13) | 0.0485 (13) | 0.0523 (14) | −0.0148 (10) | 0.0048 (10) | −0.0128 (11) |
C8 | 0.0405 (12) | 0.0423 (12) | 0.0579 (14) | −0.0137 (9) | −0.0079 (10) | −0.0104 (10) |
C9 | 0.0426 (12) | 0.0306 (10) | 0.0448 (12) | −0.0135 (8) | −0.0098 (9) | −0.0070 (8) |
O1—N3 | 1.222 (3) | C2—H2C | 0.9600 |
O2—N3 | 1.223 (3) | C2—H2D | 0.9600 |
N1—N2 | 1.357 (3) | C3—C9 | 1.389 (3) |
N1—C1 | 1.456 (3) | C4—C5 | 1.409 (3) |
N1—C3 | 1.350 (3) | C4—C9 | 1.420 (3) |
N2—C4 | 1.346 (3) | C5—C6 | 1.366 (3) |
N3—C6 | 1.460 (3) | C5—H5A | 0.9300 |
C1—H1A | 0.9600 | C6—C7 | 1.416 (4) |
C1—H1B | 0.9600 | C7—C8 | 1.354 (3) |
C1—H1C | 0.9600 | C7—H7A | 0.9300 |
C2—C3 | 1.487 (3) | C8—C9 | 1.405 (3) |
C2—H2B | 0.9600 | C8—H8A | 0.9300 |
N2—N1—C1 | 118.6 (2) | N1—C3—C2 | 124.3 (2) |
C3—N1—N2 | 114.84 (19) | C9—C3—C2 | 130.3 (2) |
C3—N1—C1 | 126.6 (2) | N2—C4—C5 | 127.8 (2) |
C4—N2—N1 | 102.99 (17) | N2—C4—C9 | 111.81 (19) |
O1—N3—O2 | 122.6 (2) | C5—C4—C9 | 120.4 (2) |
O1—N3—C6 | 118.2 (2) | C6—C5—C4 | 116.1 (2) |
O2—N3—C6 | 119.2 (2) | C6—C5—H5A | 121.9 |
N1—C1—H1A | 109.5 | C4—C5—H5A | 121.9 |
N1—C1—H1B | 109.5 | C5—C6—C7 | 124.2 (2) |
H1A—C1—H1B | 109.5 | C5—C6—N3 | 117.7 (2) |
N1—C1—H1C | 109.5 | C7—C6—N3 | 118.1 (2) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 119.7 (2) |
H1B—C1—H1C | 109.5 | C8—C7—H7A | 120.1 |
C3—C2—H2B | 109.5 | C6—C7—H7A | 120.1 |
C3—C2—H2C | 109.5 | C7—C8—C9 | 118.6 (2) |
H2B—C2—H2C | 109.5 | C7—C8—H8A | 120.7 |
C3—C2—H2D | 109.5 | C9—C8—H8A | 120.7 |
H2B—C2—H2D | 109.5 | C3—C9—C8 | 134.1 (2) |
H2C—C2—H2D | 109.5 | C3—C9—C4 | 105.00 (19) |
N1—C3—C9 | 105.36 (19) | C8—C9—C4 | 120.9 (2) |
C1—N1—N2—C4 | 179.6 (2) | C2—C3—C9—C8 | −2.1 (4) |
C3—N1—N2—C4 | 0.1 (2) | N2—C4—C5—C6 | −178.9 (2) |
N2—N1—C3—C2 | −178.6 (2) | C9—C4—C5—C6 | 0.9 (3) |
N2—N1—C3—C9 | 0.2 (2) | N2—C4—C9—C3 | 0.4 (2) |
C1—N1—C3—C2 | 1.9 (4) | N2—C4—C9—C8 | −179.25 (18) |
C1—N1—C3—C9 | −179.3 (2) | C5—C4—C9—C3 | −179.41 (19) |
N1—N2—C4—C5 | 179.5 (2) | C5—C4—C9—C8 | 0.9 (3) |
N1—N2—C4—C9 | −0.3 (2) | C4—C5—C6—C7 | −2.2 (3) |
O1—N3—C6—C5 | 175.6 (2) | C4—C5—C6—N3 | 179.20 (19) |
O1—N3—C6—C7 | −3.1 (3) | C5—C6—C7—C8 | 1.8 (4) |
O2—N3—C6—C5 | −5.0 (3) | N3—C6—C7—C8 | −179.7 (2) |
O2—N3—C6—C7 | 176.4 (2) | C6—C7—C8—C9 | 0.2 (3) |
N1—C3—C9—C4 | −0.4 (2) | C7—C8—C9—C3 | 179.0 (2) |
N1—C3—C9—C8 | 179.3 (2) | C7—C8—C9—C4 | −1.4 (3) |
C2—C3—C9—C4 | 178.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.96 | 2.58 | 3.533 (4) | 171 |
Symmetry code: (i) −x−1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C9H9N3O2 |
Mr | 191.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 6.5800 (13), 7.2050 (14), 10.752 (2) |
α, β, γ (°) | 75.07 (3), 74.67 (3), 66.73 (3) |
V (Å3) | 444.81 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.969, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1756, 1606, 1292 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.154, 1.00 |
No. of reflections | 1606 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.25 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.96 | 2.58 | 3.533 (4) | 171 |
Symmetry code: (i) −x−1, −y+2, −z. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, B.-C., Deng, F. & Wang, H.-Z. (1999). Speciality Petro. Chem. pp. 18–20. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of indazole are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C3/C4/C9) and B (C4-C9) are, of course, planar and the dihedral angle between them is A/B = 0.80 (3)°. The indazole ring system is planar with a maximum deviation of -0.019 (3) Å for atom C6. Atoms O1, O2, N3, C1 and C2 are 0.024 (3), -0.124 (3), -0.038 (3), 0.003 (3) and -0.056 (3) Å away from the plane of the indazole ring system, respectively.
In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into centrosymmetric dimers forming R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the indazole rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 2 - x, 2 - y, -z, (ii) 2 - x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C3/C4/C9) and B (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distances of 3.632 (1) and 3.705 (1) Å, respectively.