organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-{4-methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­­oxy]phen­yl}carbamate

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 26 June 2009; accepted 1 July 2009; online 11 July 2009)

In the mol­ecule of the title compound, C21H22N4O3, the pyrimidine ring is oriented at dihedral angles of 0.51 (3) and 50.76 (3)° to the pyridine and benzene rings, respectively. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R22(24) ring motifs; the dimers are linked by inter­molecular C—H⋯O hydrogen bonds into a two-dimensional network. ππ contacts between the benzene rings and between the pyrimidine and pyridine rings [centroid–centroid distances = 3.891 (1) and 3.646 (1) Å, respectively] may further stabilize the structure. Two weak C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N4O3

  • Mr = 378.43

  • Triclinic, [P \overline 1]

  • a = 9.951 (2) Å

  • b = 10.733 (2) Å

  • c = 11.577 (2) Å

  • α = 114.74 (3)°

  • β = 107.14 (3)°

  • γ = 99.97 (3)°

  • V = 1008.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 3882 measured reflections

  • 3652 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.184

  • S = 1.01

  • 3652 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.10 2.944 (4) 165
C15—H15A⋯O2ii 0.93 2.45 3.382 (4) 177
C18—H18A⋯O2ii 0.93 2.39 3.319 (4) 174
C3—H3BCg1i 0.96 2.86 3.560 (3) 131
C12—H12BCg2iii 0.96 2.90 3.788 (3) 154
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+2. Cg1 and Cg2 are the centroids of the C6–C11 and N2/N3/C13–C16 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21) are, of course, planar and the dihedral angles between them are A/B = 50.76 (3), A/C = 50.58 (3) and B/C = 0.51 (3) °.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(24) ring motifs (Bernstein et al., 1995), and then intermolecular C-H···O hydrogen bonds (Table 1) link them into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the phenyl rings and between the pyrimidine and the pyridine rings, Cg1—Cg1i and Cg2—Cg3ii [symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21), respectively] may further stabilize the structure, with centroid-centroid distances of 3.891 (1) and 3.646 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are centroids of the C6–C11 and N2/N3/C13–C16 rings, respectively.

Experimental top

To a mixture of 2-(methylsulfonyl)-4-(pyridin-3-yl)pyrimidine (47.1 g, 0.2 mol) in DMF (75 ml) and tert-butyl-3-hydroxy-4-methylphenylcarbamate (44.7 g, 0.2 mol) in DMF (150 ml) was added sodium hydride (44.4 g) slowly and was stirred for 18 h at room temperature. After acidified with citric acid the reaction mixture was poured into ice-water (2000 ml). The precipitate was filtered, washed with water and was extracted with dichloromethane.The dichloromethane layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was recrystallized from ethyl ether to give the title compound (yield; 73.4 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
tert-Butyl N-{4-methyl-3-[4-(3-pyridyl)pyrimidin-2- yloxy]phenyl}carbamate top
Crystal data top
C21H22N4O3Z = 2
Mr = 378.43F(000) = 400
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.951 (2) ÅCell parameters from 25 reflections
b = 10.733 (2) Åθ = 9–13°
c = 11.577 (2) ŵ = 0.09 mm1
α = 114.74 (3)°T = 294 K
β = 107.14 (3)°Block, colorless
γ = 99.97 (3)°0.30 × 0.20 × 0.10 mm
V = 1008.6 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.975, Tmax = 0.992l = 1313
3882 measured reflections3 standard reflections every 120 min
3652 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1P)2 + 0.07P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3652 reflectionsΔρmax = 0.29 e Å3
254 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (5)
Crystal data top
C21H22N4O3γ = 99.97 (3)°
Mr = 378.43V = 1008.6 (6) Å3
Triclinic, P1Z = 2
a = 9.951 (2) ÅMo Kα radiation
b = 10.733 (2) ŵ = 0.09 mm1
c = 11.577 (2) ÅT = 294 K
α = 114.74 (3)°0.30 × 0.20 × 0.10 mm
β = 107.14 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2333 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.975, Tmax = 0.9923 standard reflections every 120 min
3882 measured reflections intensity decay: 1%
3652 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3652 reflectionsΔρmin = 0.27 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0153 (2)0.8866 (2)0.2102 (2)0.0600 (6)
O20.0613 (2)0.7528 (2)0.3167 (2)0.0719 (7)
O30.4840 (2)0.8449 (2)0.7311 (2)0.0594 (6)
N10.2087 (2)0.9880 (2)0.4085 (2)0.0498 (6)
H1A0.21411.05990.39290.060*
N20.2426 (2)0.7463 (2)0.7031 (2)0.0429 (5)
N30.4351 (3)0.6437 (3)0.7463 (3)0.0574 (7)
N40.1874 (3)0.7568 (2)0.6228 (3)0.0567 (7)
C10.1644 (4)0.8538 (4)0.0096 (4)0.0910 (12)
H1B0.17310.94580.06400.136*
H1C0.25700.79200.07080.136*
H1D0.08550.86940.02000.136*
C20.1138 (4)0.6358 (4)0.0150 (4)0.0862 (11)
H2B0.09220.59190.07240.129*
H2C0.03390.65030.01360.129*
H2D0.20570.57270.06590.129*
C30.2421 (4)0.7685 (5)0.1575 (4)0.0929 (12)
H3B0.24850.86300.20800.139*
H3C0.21190.73120.21960.139*
H3D0.33810.70320.08340.139*
C40.1288 (3)0.7813 (3)0.0971 (3)0.0550 (8)
C50.0919 (3)0.8649 (3)0.3128 (3)0.0490 (7)
C60.3229 (3)1.0147 (3)0.5304 (3)0.0417 (6)
C70.4275 (3)1.1551 (3)0.6155 (3)0.0515 (7)
H7A0.42021.22580.58980.062*
C80.5415 (3)1.1899 (3)0.7372 (3)0.0573 (8)
H8A0.61021.28440.79260.069*
C90.5577 (3)1.0880 (3)0.7807 (3)0.0505 (7)
C100.4535 (3)0.9502 (3)0.6937 (3)0.0449 (6)
C110.3367 (3)0.9096 (3)0.5703 (3)0.0459 (7)
H11A0.26890.81470.51500.055*
C120.6828 (4)1.1258 (4)0.9146 (3)0.0766 (10)
H12A0.67421.04130.92560.115*
H12B0.67641.20280.99200.115*
H12C0.77731.15730.91140.115*
C130.3789 (3)0.7420 (3)0.7256 (3)0.0446 (6)
C140.3369 (3)0.5396 (3)0.7410 (3)0.0610 (8)
H14A0.36920.46920.75620.073*
C150.1907 (3)0.5281 (3)0.7147 (3)0.0569 (8)
H15A0.12440.45100.70900.068*
C160.1453 (3)0.6373 (3)0.6967 (2)0.0404 (6)
C170.0094 (3)0.6389 (3)0.6684 (3)0.0404 (6)
C180.1188 (3)0.5330 (3)0.6602 (3)0.0507 (7)
H18A0.09700.45740.67250.061*
C190.2597 (3)0.5405 (3)0.6339 (3)0.0571 (8)
H19A0.33470.46970.62770.068*
C200.2896 (3)0.6538 (3)0.6167 (3)0.0525 (7)
H20A0.38540.65840.60000.063*
C210.0505 (3)0.7479 (3)0.6477 (3)0.0519 (7)
H21A0.02170.81890.65140.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0613 (12)0.0482 (11)0.0602 (12)0.0112 (10)0.0039 (10)0.0353 (10)
O20.0703 (14)0.0469 (12)0.0834 (15)0.0087 (10)0.0013 (12)0.0443 (11)
O30.0419 (11)0.0666 (13)0.0880 (15)0.0232 (10)0.0201 (10)0.0567 (12)
N10.0556 (14)0.0365 (12)0.0589 (14)0.0166 (11)0.0147 (12)0.0307 (11)
N20.0440 (13)0.0406 (12)0.0466 (13)0.0166 (10)0.0146 (10)0.0258 (10)
N30.0573 (15)0.0581 (15)0.0733 (17)0.0319 (13)0.0248 (13)0.0435 (14)
N40.0489 (14)0.0506 (14)0.0806 (18)0.0231 (12)0.0241 (13)0.0406 (14)
C10.089 (3)0.086 (3)0.079 (2)0.018 (2)0.000 (2)0.053 (2)
C20.101 (3)0.064 (2)0.071 (2)0.030 (2)0.023 (2)0.0216 (19)
C30.068 (2)0.119 (3)0.106 (3)0.039 (2)0.037 (2)0.066 (3)
C40.0508 (17)0.0516 (17)0.0580 (18)0.0161 (14)0.0135 (15)0.0299 (15)
C50.0509 (16)0.0428 (15)0.0578 (17)0.0181 (13)0.0175 (14)0.0313 (14)
C60.0423 (14)0.0407 (14)0.0512 (16)0.0192 (12)0.0210 (13)0.0275 (13)
C70.0546 (17)0.0417 (15)0.0616 (18)0.0178 (13)0.0215 (15)0.0296 (14)
C80.0544 (17)0.0427 (16)0.0601 (18)0.0088 (13)0.0149 (15)0.0219 (14)
C90.0457 (15)0.0533 (17)0.0540 (17)0.0176 (14)0.0182 (13)0.0293 (14)
C100.0398 (14)0.0521 (16)0.0591 (17)0.0218 (13)0.0230 (13)0.0375 (14)
C110.0455 (15)0.0396 (14)0.0556 (17)0.0150 (12)0.0194 (13)0.0271 (13)
C120.066 (2)0.079 (2)0.065 (2)0.0115 (18)0.0066 (17)0.0370 (19)
C130.0442 (15)0.0469 (15)0.0458 (15)0.0180 (12)0.0138 (12)0.0278 (13)
C140.064 (2)0.0559 (18)0.086 (2)0.0355 (16)0.0306 (17)0.0495 (18)
C150.0608 (19)0.0468 (16)0.078 (2)0.0229 (14)0.0281 (16)0.0424 (16)
C160.0502 (15)0.0341 (13)0.0380 (14)0.0169 (12)0.0157 (12)0.0193 (11)
C170.0445 (15)0.0343 (13)0.0423 (14)0.0150 (11)0.0142 (12)0.0210 (11)
C180.0527 (17)0.0448 (15)0.0610 (18)0.0179 (13)0.0187 (14)0.0343 (14)
C190.0512 (17)0.0516 (17)0.072 (2)0.0109 (14)0.0213 (15)0.0392 (16)
C200.0439 (15)0.0542 (17)0.0623 (18)0.0186 (13)0.0200 (14)0.0321 (15)
C210.0466 (16)0.0412 (15)0.073 (2)0.0157 (12)0.0196 (14)0.0363 (15)
Geometric parameters (Å, º) top
O1—C41.463 (3)C6—C71.391 (4)
O1—C51.344 (3)C6—C111.399 (3)
O2—C51.211 (3)C7—C81.373 (4)
O3—C101.418 (3)C7—H7A0.9300
O3—C131.349 (3)C8—C91.396 (4)
N1—C51.345 (3)C8—H8A0.9300
N1—C61.403 (3)C9—C101.372 (4)
N1—H1A0.8600C9—C121.509 (4)
N3—C131.349 (3)C10—C111.380 (4)
N3—C141.318 (4)C11—H11A0.9300
N4—C201.327 (3)C12—H12A0.9600
N4—C211.336 (3)C12—H12B0.9600
C1—C41.518 (4)C12—H12C0.9600
C1—H1B0.9600C14—C151.367 (4)
C1—H1C0.9600C14—H14A0.9300
C1—H1D0.9600C15—C161.397 (3)
N2—C131.317 (3)C15—H15A0.9300
N2—C161.344 (3)C16—C171.482 (4)
C2—C41.512 (4)C17—C181.380 (4)
C2—H2B0.9600C17—C211.391 (3)
C2—H2C0.9600C18—C191.368 (4)
C2—H2D0.9600C18—H18A0.9300
C3—C41.507 (5)C19—C201.379 (4)
C3—H3B0.9600C19—H19A0.9300
C3—H3C0.9600C20—H20A0.9300
C3—H3D0.9600C21—H21A0.9300
C5—O1—C4122.7 (2)C9—C8—H8A118.9
C13—O3—C10123.90 (19)C10—C9—C8116.0 (3)
C5—N1—C6128.6 (2)C10—C9—C12121.7 (3)
C5—N1—H1A115.7C8—C9—C12122.3 (3)
C6—N1—H1A115.7C9—C10—C11124.2 (2)
C13—N2—C16116.2 (2)C9—C10—O3114.6 (2)
C14—N3—C13113.6 (2)C11—C10—O3120.9 (2)
C4—C1—H1B109.5C10—C11—C6118.4 (2)
C4—C1—H1C109.5C10—C11—H11A120.8
H1B—C1—H1C109.5C6—C11—H11A120.8
C4—C1—H1D109.5C9—C12—H12A109.5
H1B—C1—H1D109.5C9—C12—H12B109.5
H1C—C1—H1D109.5H12A—C12—H12B109.5
C4—C2—H2B109.5C9—C12—H12C109.5
C4—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
C4—C2—H2D109.5N2—C13—O3120.7 (2)
H2B—C2—H2D109.5N2—C13—N3128.4 (3)
H2C—C2—H2D109.5O3—C13—N3110.9 (2)
C4—C3—H3B109.5N3—C14—C15124.3 (3)
C4—C3—H3C109.5N3—C14—H14A117.8
H3B—C3—H3C109.5C15—C14—H14A117.8
C4—C3—H3D109.5C14—C15—C16117.1 (3)
H3B—C3—H3D109.5C14—C15—H15A121.4
H3C—C3—H3D109.5C16—C15—H15A121.4
C20—N4—C21117.2 (2)N2—C16—C15120.4 (2)
O1—C4—C3109.0 (3)N2—C16—C17116.8 (2)
O1—C4—C2110.8 (2)C15—C16—C17122.8 (2)
C3—C4—C2112.3 (3)C18—C17—C21117.2 (2)
O1—C4—C1102.0 (2)C18—C17—C16122.0 (2)
C3—C4—C1111.1 (3)C21—C17—C16120.8 (2)
C2—C4—C1111.1 (3)C19—C18—C17119.3 (2)
O2—C5—O1125.6 (3)C19—C18—H18A120.3
O2—C5—N1126.3 (3)C17—C18—H18A120.3
O1—C5—N1108.1 (2)C18—C19—C20119.4 (3)
C7—C6—C11118.9 (2)C18—C19—H19A120.3
C7—C6—N1117.0 (2)C20—C19—H19A120.3
C11—C6—N1124.0 (2)N4—C20—C19122.8 (3)
C8—C7—C6120.3 (3)N4—C20—H20A118.6
C8—C7—H7A119.8C19—C20—H20A118.6
C6—C7—H7A119.8N4—C21—C17124.0 (2)
C7—C8—C9122.2 (3)N4—C21—H21A118.0
C7—C8—H8A118.9C17—C21—H21A118.0
C5—O1—C4—C364.0 (3)C16—N2—C13—O3178.7 (2)
C5—O1—C4—C260.1 (4)C16—N2—C13—N31.6 (4)
C5—O1—C4—C1178.5 (3)C10—O3—C13—N29.7 (4)
C4—O1—C5—O28.5 (5)C10—O3—C13—N3170.6 (2)
C4—O1—C5—N1172.4 (2)C14—N3—C13—N20.8 (4)
C6—N1—C5—O22.1 (5)C14—N3—C13—O3179.5 (2)
C6—N1—C5—O1177.0 (2)C13—N3—C14—C151.1 (5)
C5—N1—C6—C7177.0 (3)N3—C14—C15—C162.0 (5)
C5—N1—C6—C112.9 (4)C13—N2—C16—C150.5 (4)
C11—C6—C7—C80.6 (4)C13—N2—C16—C17178.7 (2)
N1—C6—C7—C8179.3 (3)C14—C15—C16—N21.1 (4)
C6—C7—C8—C90.0 (5)C14—C15—C16—C17179.7 (3)
C7—C8—C9—C100.6 (4)N2—C16—C17—C18179.7 (2)
C7—C8—C9—C12179.9 (3)C15—C16—C17—C181.1 (4)
C8—C9—C10—C110.7 (4)N2—C16—C17—C210.9 (4)
C12—C9—C10—C11179.9 (3)C15—C16—C17—C21178.3 (3)
C8—C9—C10—O3172.1 (2)C21—C17—C18—C190.6 (4)
C12—C9—C10—O37.3 (4)C16—C17—C18—C19180.0 (2)
C13—O3—C10—C9138.8 (3)C17—C18—C19—C200.3 (4)
C13—O3—C10—C1148.2 (4)C21—N4—C20—C190.4 (4)
C9—C10—C11—C60.1 (4)C18—C19—C20—N40.8 (5)
O3—C10—C11—C6172.3 (2)C20—N4—C21—C170.6 (4)
C7—C6—C11—C100.6 (4)C18—C17—C21—N41.1 (4)
N1—C6—C11—C10179.3 (2)C16—C17—C21—N4179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.102.944 (4)165
C15—H15A···O2ii0.932.453.382 (4)177
C18—H18A···O2ii0.932.393.319 (4)174
C3—H3B···Cg1i0.962.863.560 (3)131
C12—H12B···Cg2iii0.962.903.788 (3)154
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC21H22N4O3
Mr378.43
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.951 (2), 10.733 (2), 11.577 (2)
α, β, γ (°)114.74 (3), 107.14 (3), 99.97 (3)
V3)1008.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3882, 3652, 2333
Rint0.026
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.184, 1.01
No. of reflections3652
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.102.944 (4)165
C15—H15A···O2ii0.932.453.382 (4)177
C18—H18A···O2ii0.932.393.319 (4)174
C3—H3B···Cg1i0.962.863.560 (3)131
C12—H12B···Cg2iii0.962.903.788 (3)154
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds