organic compounds
2-Amino-6-nitro-1H-benzoimidazol-3-ium chloride
aFaculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road No. 100, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: gdut_chen@163.com
In the cation of the title compound, C7H7N4O2+·Cl−, the benzimidazole ring system is planar with a maximum deviation of −0.019 (3) Å. In the C—H⋯Cl, N—H⋯Cl, and N—H⋯Cl interactions link the molecules into a two-dimensional network. π–π contacts between benzimidazole rings [centroid–centroid distances = 3.928 (1) and 3.587 (1) Å] may further stabilize the structure.
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536809027342/hk2728sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027342/hk2728Isup2.hkl
For the preparation of the title compound, a suspension of 4-nitro-o-phenylenediamine (1.4 g, 9.1 mmol) in a solution of BrCN (0.97 g, 9.2 mmol) in water (30 ml) was refluxed for 7 h, and then cooled and neutralized with NH4OH (25%) to pH = 11. The formed precipitate was filtered, washed with water and dried to give the title compound, as a yellow solid (yield; 1.5 g, 92%). Crystals suitable for X-ray analysis were obtained after 3 d by slow evaporation of the mother liquid at room temperature.
H atoms were positioned geometrically, with N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C7H7N4O2+·Cl− | F(000) = 880 |
Mr = 214.62 | Dx = 1.586 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 13.969 (3) Å | θ = 2.1–25.3° |
b = 7.8064 (19) Å | µ = 0.40 mm−1 |
c = 16.490 (4) Å | T = 291 K |
β = 91.303 (3)° | Block, yellow |
V = 1797.7 (7) Å3 | 0.12 × 0.12 × 0.10 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | 1242 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
ω/2θ scans | h = −16→16 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
Tmin = 0.953, Tmax = 0.961 | l = −19→13 |
4345 measured reflections | 3 standard reflections every 120 min |
1580 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.969P] where P = (Fo2 + 2Fc2)/3 |
1580 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C7H7N4O2+·Cl− | V = 1797.7 (7) Å3 |
Mr = 214.62 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.969 (3) Å | µ = 0.40 mm−1 |
b = 7.8064 (19) Å | T = 291 K |
c = 16.490 (4) Å | 0.12 × 0.12 × 0.10 mm |
β = 91.303 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1242 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.041 |
Tmin = 0.953, Tmax = 0.961 | 3 standard reflections every 120 min |
4345 measured reflections | intensity decay: none |
1580 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.18 e Å−3 |
1580 reflections | Δρmin = −0.20 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.40318 (4) | 0.59647 (8) | 0.67245 (4) | 0.0535 (2) | |
O1 | 0.38248 (13) | 0.6546 (3) | 0.39469 (12) | 0.0718 (6) | |
O2 | 0.42766 (13) | 0.8483 (3) | 0.31128 (11) | 0.0743 (6) | |
N1 | 0.61668 (12) | 0.7489 (2) | 0.63485 (10) | 0.0424 (5) | |
H1A | 0.5835 | 0.6840 | 0.6656 | 0.051* | |
N2 | 0.72946 (12) | 0.9189 (2) | 0.59344 (10) | 0.0403 (4) | |
H2A | 0.7805 | 0.9804 | 0.5934 | 0.048* | |
N3 | 0.73958 (14) | 0.8248 (3) | 0.72889 (12) | 0.0552 (6) | |
H3A | 0.7916 | 0.8812 | 0.7380 | 0.066* | |
H3B | 0.7150 | 0.7649 | 0.7669 | 0.066* | |
N4 | 0.43847 (13) | 0.7660 (3) | 0.37360 (12) | 0.0491 (5) | |
C1 | 0.69763 (15) | 0.8301 (3) | 0.65691 (13) | 0.0392 (5) | |
C2 | 0.59515 (14) | 0.7865 (3) | 0.55416 (12) | 0.0363 (5) | |
C3 | 0.66716 (14) | 0.8960 (3) | 0.52782 (13) | 0.0361 (5) | |
C4 | 0.66616 (16) | 0.9615 (3) | 0.44987 (13) | 0.0420 (5) | |
H4 | 0.7147 | 1.0332 | 0.4323 | 0.050* | |
C5 | 0.59021 (16) | 0.9163 (3) | 0.39925 (13) | 0.0432 (5) | |
H5 | 0.5859 | 0.9590 | 0.3466 | 0.052* | |
C6 | 0.52047 (15) | 0.8067 (3) | 0.42752 (13) | 0.0392 (5) | |
C7 | 0.52051 (15) | 0.7385 (3) | 0.50434 (13) | 0.0401 (5) | |
H7 | 0.4728 | 0.6644 | 0.5213 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0422 (4) | 0.0708 (4) | 0.0475 (4) | −0.0144 (3) | 0.0034 (3) | −0.0083 (3) |
O1 | 0.0580 (12) | 0.0805 (13) | 0.0762 (13) | −0.0252 (10) | −0.0151 (10) | 0.0019 (11) |
O2 | 0.0612 (12) | 0.1070 (16) | 0.0539 (12) | −0.0053 (11) | −0.0168 (9) | 0.0130 (11) |
N1 | 0.0447 (11) | 0.0431 (11) | 0.0393 (11) | −0.0091 (9) | 0.0011 (8) | 0.0035 (8) |
N2 | 0.0328 (10) | 0.0461 (11) | 0.0419 (10) | −0.0076 (8) | −0.0012 (8) | 0.0000 (8) |
N3 | 0.0523 (13) | 0.0663 (14) | 0.0466 (12) | −0.0117 (10) | −0.0096 (10) | 0.0075 (10) |
N4 | 0.0387 (11) | 0.0593 (13) | 0.0491 (12) | 0.0016 (10) | −0.0039 (9) | −0.0090 (10) |
C1 | 0.0351 (11) | 0.0413 (12) | 0.0411 (13) | 0.0005 (9) | −0.0013 (9) | −0.0016 (10) |
C2 | 0.0357 (11) | 0.0366 (11) | 0.0367 (12) | 0.0003 (9) | 0.0019 (9) | −0.0012 (9) |
C3 | 0.0311 (11) | 0.0368 (11) | 0.0405 (12) | 0.0005 (9) | 0.0022 (9) | −0.0035 (9) |
C4 | 0.0372 (12) | 0.0445 (13) | 0.0446 (13) | −0.0050 (10) | 0.0064 (10) | 0.0019 (10) |
C5 | 0.0430 (13) | 0.0479 (13) | 0.0387 (12) | 0.0007 (10) | 0.0026 (10) | 0.0006 (10) |
C6 | 0.0364 (12) | 0.0420 (12) | 0.0391 (12) | 0.0023 (9) | −0.0021 (9) | −0.0063 (10) |
C7 | 0.0362 (12) | 0.0393 (12) | 0.0448 (13) | −0.0059 (9) | 0.0039 (10) | −0.0051 (10) |
N1—H1A | 0.8600 | C2—C7 | 1.365 (3) |
N2—H2A | 0.8600 | C3—N2 | 1.385 (3) |
N3—H3A | 0.8600 | C3—C4 | 1.383 (3) |
N3—H3B | 0.8600 | C4—C5 | 1.381 (3) |
N4—O1 | 1.225 (3) | C4—H4 | 0.9300 |
N4—O2 | 1.219 (2) | C5—C6 | 1.385 (3) |
C1—N1 | 1.340 (3) | C5—H5 | 0.9300 |
C1—N2 | 1.340 (3) | C6—C7 | 1.374 (3) |
C1—N3 | 1.312 (3) | C6—N4 | 1.469 (3) |
C2—N1 | 1.389 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.397 (3) | ||
C1—N1—C2 | 108.84 (17) | C7—C2—C3 | 121.8 (2) |
C1—N1—H1A | 125.6 | N2—C3—C2 | 106.28 (18) |
C2—N1—H1A | 125.6 | C4—C3—N2 | 132.2 (2) |
C1—N2—C3 | 109.26 (17) | C4—C3—C2 | 121.6 (2) |
C1—N2—H2A | 125.4 | C3—C4—H4 | 121.4 |
C3—N2—H2A | 125.4 | C5—C4—C3 | 117.3 (2) |
C1—N3—H3A | 120.0 | C5—C4—H4 | 121.4 |
C1—N3—H3B | 120.0 | C4—C5—C6 | 119.4 (2) |
H3A—N3—H3B | 120.0 | C4—C5—H5 | 120.3 |
O1—N4—C6 | 118.4 (2) | C6—C5—H5 | 120.3 |
O2—N4—O1 | 123.1 (2) | C5—C6—N4 | 118.3 (2) |
O2—N4—C6 | 118.5 (2) | C7—C6—N4 | 117.27 (19) |
N2—C1—N1 | 109.02 (18) | C7—C6—C5 | 124.3 (2) |
N3—C1—N1 | 126.0 (2) | C2—C7—C6 | 115.6 (2) |
N3—C1—N2 | 125.0 (2) | C2—C7—H7 | 122.2 |
N1—C2—C3 | 106.60 (18) | C6—C7—H7 | 122.2 |
C7—C2—N1 | 131.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cl1 | 0.93 | 2.75 | 3.436 (2) | 132 |
N1—H1A···Cl1 | 0.86 | 2.61 | 3.2830 (19) | 135 |
N1—H1A···Cl1i | 0.86 | 2.76 | 3.4102 (19) | 134 |
N3—H3A···Cl1ii | 0.86 | 2.55 | 3.269 (2) | 142 |
N2—H2A···Cl1ii | 0.86 | 2.31 | 3.0601 (19) | 145 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C7H7N4O2+·Cl− |
Mr | 214.62 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 291 |
a, b, c (Å) | 13.969 (3), 7.8064 (19), 16.490 (4) |
β (°) | 91.303 (3) |
V (Å3) | 1797.7 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.12 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.953, 0.961 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4345, 1580, 1242 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.096, 1.02 |
No. of reflections | 1580 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cl1 | 0.93 | 2.75 | 3.436 (2) | 131.6 |
N1—H1A···Cl1 | 0.86 | 2.61 | 3.2830 (19) | 135.4 |
N1—H1A···Cl1i | 0.86 | 2.76 | 3.4102 (19) | 133.7 |
N3—H3A···Cl1ii | 0.86 | 2.55 | 3.269 (2) | 141.8 |
N2—H2A···Cl1ii | 0.86 | 2.31 | 3.0601 (19) | 145.3 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, y+1/2, z. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of 2-aminobenzimidazolium are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C3) and B (C2-C7) are, of course, planar and they are oriented at a dihedral angle of 1.70 (3)°. The benzimidazole ring system is planar with a maximum deviation of -0.019 (3) Å for atom C5. Atoms O1, N3 and N4 are 0.064 (3), -0.044 (3) and -0.094 (3) Å away from the plane of the benzimidazole ring system, respectively.
In the crystal structure, intramolecular C-H···Cl and N-H···Cl and intermolecular N-H···Cl interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the benzimidazole rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 1/2 - x, 3/2 - y, -z, (ii) -x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C1-C3) and B (C2-C7), respectively] may further stabilize the structure, with centroid-centroid distances of 3.928 (1) and 3.587 (1) Å, respectively.