organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-nitro-1H-benzoimidazol-3-ium chloride

aFaculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road No. 100, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: gdut_chen@163.com

(Received 27 June 2009; accepted 12 July 2009; online 18 July 2009)

In the cation of the title compound, C7H7N4O2+·Cl, the benzimidazole ring system is planar with a maximum deviation of −0.019 (3) Å. In the crystal structure, C—H⋯Cl, N—H⋯Cl, and N—H⋯Cl inter­actions link the mol­ecules into a two-dimensional network. ππ contacts between benzimidazole rings [centroid–centroid distances = 3.928 (1) and 3.587 (1) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N4O2+·Cl

  • Mr = 214.62

  • Monoclinic, C 2/c

  • a = 13.969 (3) Å

  • b = 7.8064 (19) Å

  • c = 16.490 (4) Å

  • β = 91.303 (3)°

  • V = 1797.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 291 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.953, Tmax = 0.961

  • 4345 measured reflections

  • 1580 independent reflections

  • 1242 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.02

  • 1580 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1 0.93 2.75 3.436 (2) 132
N1—H1A⋯Cl1 0.86 2.61 3.2830 (19) 135
N1—H1A⋯Cl1i 0.86 2.76 3.4102 (19) 134
N3—H3A⋯Cl1ii 0.86 2.55 3.269 (2) 142
N2—H2A⋯Cl1ii 0.86 2.31 3.0601 (19) 145
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Some derivatives of 2-aminobenzimidazolium are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C3) and B (C2-C7) are, of course, planar and they are oriented at a dihedral angle of 1.70 (3)°. The benzimidazole ring system is planar with a maximum deviation of -0.019 (3) Å for atom C5. Atoms O1, N3 and N4 are 0.064 (3), -0.044 (3) and -0.094 (3) Å away from the plane of the benzimidazole ring system, respectively.

In the crystal structure, intramolecular C-H···Cl and N-H···Cl and intermolecular N-H···Cl interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the benzimidazole rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 1/2 - x, 3/2 - y, -z, (ii) -x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C1-C3) and B (C2-C7), respectively] may further stabilize the structure, with centroid-centroid distances of 3.928 (1) and 3.587 (1) Å, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a suspension of 4-nitro-o-phenylenediamine (1.4 g, 9.1 mmol) in a solution of BrCN (0.97 g, 9.2 mmol) in water (30 ml) was refluxed for 7 h, and then cooled and neutralized with NH4OH (25%) to pH = 11. The formed precipitate was filtered, washed with water and dried to give the title compound, as a yellow solid (yield; 1.5 g, 92%). Crystals suitable for X-ray analysis were obtained after 3 d by slow evaporation of the mother liquid at room temperature.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Amino-6-nitro-1H-benzoimidazol-3-ium chloride top
Crystal data top
C7H7N4O2+·ClF(000) = 880
Mr = 214.62Dx = 1.586 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.969 (3) Åθ = 2.1–25.3°
b = 7.8064 (19) ŵ = 0.40 mm1
c = 16.490 (4) ÅT = 291 K
β = 91.303 (3)°Block, yellow
V = 1797.7 (7) Å30.12 × 0.12 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1242 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 1616
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.953, Tmax = 0.961l = 1913
4345 measured reflections3 standard reflections every 120 min
1580 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.969P]
where P = (Fo2 + 2Fc2)/3
1580 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H7N4O2+·ClV = 1797.7 (7) Å3
Mr = 214.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.969 (3) ŵ = 0.40 mm1
b = 7.8064 (19) ÅT = 291 K
c = 16.490 (4) Å0.12 × 0.12 × 0.10 mm
β = 91.303 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1242 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.953, Tmax = 0.9613 standard reflections every 120 min
4345 measured reflections intensity decay: none
1580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
1580 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40318 (4)0.59647 (8)0.67245 (4)0.0535 (2)
O10.38248 (13)0.6546 (3)0.39469 (12)0.0718 (6)
O20.42766 (13)0.8483 (3)0.31128 (11)0.0743 (6)
N10.61668 (12)0.7489 (2)0.63485 (10)0.0424 (5)
H1A0.58350.68400.66560.051*
N20.72946 (12)0.9189 (2)0.59344 (10)0.0403 (4)
H2A0.78050.98040.59340.048*
N30.73958 (14)0.8248 (3)0.72889 (12)0.0552 (6)
H3A0.79160.88120.73800.066*
H3B0.71500.76490.76690.066*
N40.43847 (13)0.7660 (3)0.37360 (12)0.0491 (5)
C10.69763 (15)0.8301 (3)0.65691 (13)0.0392 (5)
C20.59515 (14)0.7865 (3)0.55416 (12)0.0363 (5)
C30.66716 (14)0.8960 (3)0.52782 (13)0.0361 (5)
C40.66616 (16)0.9615 (3)0.44987 (13)0.0420 (5)
H40.71471.03320.43230.050*
C50.59021 (16)0.9163 (3)0.39925 (13)0.0432 (5)
H50.58590.95900.34660.052*
C60.52047 (15)0.8067 (3)0.42752 (13)0.0392 (5)
C70.52051 (15)0.7385 (3)0.50434 (13)0.0401 (5)
H70.47280.66440.52130.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0422 (4)0.0708 (4)0.0475 (4)0.0144 (3)0.0034 (3)0.0083 (3)
O10.0580 (12)0.0805 (13)0.0762 (13)0.0252 (10)0.0151 (10)0.0019 (11)
O20.0612 (12)0.1070 (16)0.0539 (12)0.0053 (11)0.0168 (9)0.0130 (11)
N10.0447 (11)0.0431 (11)0.0393 (11)0.0091 (9)0.0011 (8)0.0035 (8)
N20.0328 (10)0.0461 (11)0.0419 (10)0.0076 (8)0.0012 (8)0.0000 (8)
N30.0523 (13)0.0663 (14)0.0466 (12)0.0117 (10)0.0096 (10)0.0075 (10)
N40.0387 (11)0.0593 (13)0.0491 (12)0.0016 (10)0.0039 (9)0.0090 (10)
C10.0351 (11)0.0413 (12)0.0411 (13)0.0005 (9)0.0013 (9)0.0016 (10)
C20.0357 (11)0.0366 (11)0.0367 (12)0.0003 (9)0.0019 (9)0.0012 (9)
C30.0311 (11)0.0368 (11)0.0405 (12)0.0005 (9)0.0022 (9)0.0035 (9)
C40.0372 (12)0.0445 (13)0.0446 (13)0.0050 (10)0.0064 (10)0.0019 (10)
C50.0430 (13)0.0479 (13)0.0387 (12)0.0007 (10)0.0026 (10)0.0006 (10)
C60.0364 (12)0.0420 (12)0.0391 (12)0.0023 (9)0.0021 (9)0.0063 (10)
C70.0362 (12)0.0393 (12)0.0448 (13)0.0059 (9)0.0039 (10)0.0051 (10)
Geometric parameters (Å, º) top
N1—H1A0.8600C2—C71.365 (3)
N2—H2A0.8600C3—N21.385 (3)
N3—H3A0.8600C3—C41.383 (3)
N3—H3B0.8600C4—C51.381 (3)
N4—O11.225 (3)C4—H40.9300
N4—O21.219 (2)C5—C61.385 (3)
C1—N11.340 (3)C5—H50.9300
C1—N21.340 (3)C6—C71.374 (3)
C1—N31.312 (3)C6—N41.469 (3)
C2—N11.389 (3)C7—H70.9300
C2—C31.397 (3)
C1—N1—C2108.84 (17)C7—C2—C3121.8 (2)
C1—N1—H1A125.6N2—C3—C2106.28 (18)
C2—N1—H1A125.6C4—C3—N2132.2 (2)
C1—N2—C3109.26 (17)C4—C3—C2121.6 (2)
C1—N2—H2A125.4C3—C4—H4121.4
C3—N2—H2A125.4C5—C4—C3117.3 (2)
C1—N3—H3A120.0C5—C4—H4121.4
C1—N3—H3B120.0C4—C5—C6119.4 (2)
H3A—N3—H3B120.0C4—C5—H5120.3
O1—N4—C6118.4 (2)C6—C5—H5120.3
O2—N4—O1123.1 (2)C5—C6—N4118.3 (2)
O2—N4—C6118.5 (2)C7—C6—N4117.27 (19)
N2—C1—N1109.02 (18)C7—C6—C5124.3 (2)
N3—C1—N1126.0 (2)C2—C7—C6115.6 (2)
N3—C1—N2125.0 (2)C2—C7—H7122.2
N1—C2—C3106.60 (18)C6—C7—H7122.2
C7—C2—N1131.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.932.753.436 (2)132
N1—H1A···Cl10.862.613.2830 (19)135
N1—H1A···Cl1i0.862.763.4102 (19)134
N3—H3A···Cl1ii0.862.553.269 (2)142
N2—H2A···Cl1ii0.862.313.0601 (19)145
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC7H7N4O2+·Cl
Mr214.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)13.969 (3), 7.8064 (19), 16.490 (4)
β (°) 91.303 (3)
V3)1797.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.953, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
4345, 1580, 1242
Rint0.041
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.02
No. of reflections1580
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.932.753.436 (2)131.6
N1—H1A···Cl10.862.613.2830 (19)135.4
N1—H1A···Cl1i0.862.763.4102 (19)133.7
N3—H3A···Cl1ii0.862.553.269 (2)141.8
N2—H2A···Cl1ii0.862.313.0601 (19)145.3
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds