organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(Methyl­sulfon­yl)eth­yl]isoindoline-1,3-dione

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 28 June 2009; accepted 3 July 2009; online 18 July 2009)

In the mol­ecule of the title compound, C11H11NO4S, the isoindoline ring system is almost planar with a maximum deviation of 0.008 (3)Å. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. ππ contacts between the isoindoline rings [centroid–centroid distances = 3.592 (1) and 3.727 (1) Å] may further stabilize the structure.

Related literature

For a related structure, see: Kilburn et al. (2007[Kilburn, J. P., Andersen, H. S., Kampen, G. C. T. & Ebdrup, S. (2007). PCT Int. Appl. WO 2007051811.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO4S

  • Mr = 253.27

  • Monoclinic, P 21 /c

  • a = 7.6030 (15) Å

  • b = 17.766 (4) Å

  • c = 8.9940 (18) Å

  • β = 112.31 (3)°

  • V = 1123.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.944, Tmax = 0.972

  • 2182 measured reflections

  • 2027 independent reflections

  • 1567 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.01

  • 2027 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.93 2.34 3.189 (5) 152
C11—H11A⋯O1ii 0.96 2.51 3.463 (4) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an important pharmaceutical intermediate, which is used in treatment of metabolic syndrome. As part of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C4-C7) and B (C1-C4/C7/C8) are, of course, planar and the dihedral angle between them is A/B = 0.61 (3)°. The isoindoline ring system is planar with a maximum deviation of -0.008 (3) Å for atom N.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the isoindoline rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 2 - x, -y, 2 - z, (ii) 1 - x, -y, 2 - z, where Cg1 and Cg2 are centroids of the rings A (N/C4-C7) and B (C1-C4/C7/C8), respectively] may further stabilize the structure, with centroid-centroid distances of 3.592 (1) and 3.727 (1) Å, respectively.

Related literature top

For a related structure, see: Kilburn et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the literature method (Kilburn et al., 2007). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.1 g) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
2-[2-(Methylsulfonyl)ethyl]isoindoline-1,3-dione top
Crystal data top
C11H11NO4SF(000) = 528
Mr = 253.27Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.6030 (15) Åθ = 9–13°
b = 17.766 (4) ŵ = 0.29 mm1
c = 8.9940 (18) ÅT = 294 K
β = 112.31 (3)°Block, colorless
V = 1123.9 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.944, Tmax = 0.972l = 109
2182 measured reflections3 standard reflections every 120 min
2027 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
2027 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H11NO4SV = 1123.9 (5) Å3
Mr = 253.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6030 (15) ŵ = 0.29 mm1
b = 17.766 (4) ÅT = 294 K
c = 8.9940 (18) Å0.20 × 0.10 × 0.10 mm
β = 112.31 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1567 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.944, Tmax = 0.9723 standard reflections every 120 min
2182 measured reflections intensity decay: 1%
2027 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
2027 reflectionsΔρmin = 0.35 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.44021 (11)0.29490 (4)0.03299 (8)0.0425 (3)
O10.8805 (3)0.29528 (10)0.4407 (3)0.0524 (6)
O20.7221 (3)0.50798 (11)0.1325 (3)0.0555 (6)
O30.3992 (4)0.33791 (14)0.1503 (3)0.0700 (7)
O40.5068 (4)0.21958 (12)0.0776 (3)0.0662 (7)
N0.8004 (3)0.39124 (12)0.2541 (3)0.0394 (6)
C10.7239 (5)0.55296 (19)0.6247 (4)0.0582 (9)
H1A0.69810.59720.66790.070*
C20.7703 (5)0.4883 (2)0.7187 (4)0.0584 (9)
H2A0.77650.49010.82390.070*
C30.8074 (4)0.42096 (18)0.6577 (4)0.0496 (8)
H3A0.83680.37740.71970.060*
C40.7993 (4)0.42102 (15)0.5027 (3)0.0397 (7)
C50.8318 (4)0.35948 (15)0.4035 (3)0.0390 (6)
C60.7531 (4)0.46788 (15)0.2484 (3)0.0398 (7)
C70.7534 (4)0.48617 (15)0.4094 (3)0.0399 (7)
C80.7155 (4)0.55292 (16)0.4690 (4)0.0495 (8)
H8A0.68540.59630.40660.059*
C90.8028 (4)0.34924 (16)0.1157 (3)0.0447 (7)
H9A0.84800.29860.14960.054*
H9B0.89190.37300.07660.054*
C100.6092 (4)0.34476 (15)0.0211 (3)0.0399 (7)
H10A0.62280.32010.11230.048*
H10B0.56260.39540.05380.048*
C110.2381 (5)0.29295 (18)0.1438 (4)0.0541 (8)
H11A0.13810.26650.12530.081*
H11B0.26680.26770.22630.081*
H11C0.19780.34350.17730.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0537 (5)0.0383 (4)0.0401 (4)0.0056 (3)0.0229 (3)0.0007 (3)
O10.0670 (15)0.0347 (12)0.0607 (13)0.0102 (10)0.0302 (11)0.0087 (9)
O20.0708 (16)0.0379 (11)0.0535 (13)0.0018 (10)0.0189 (11)0.0063 (10)
O30.0893 (18)0.0790 (17)0.0613 (14)0.0205 (14)0.0507 (14)0.0248 (12)
O40.0747 (17)0.0441 (13)0.0763 (16)0.0027 (11)0.0248 (13)0.0196 (11)
N0.0463 (14)0.0293 (12)0.0421 (13)0.0008 (10)0.0161 (11)0.0030 (9)
C10.053 (2)0.0501 (19)0.077 (2)0.0085 (15)0.0302 (18)0.0260 (18)
C20.054 (2)0.072 (2)0.057 (2)0.0098 (17)0.0289 (16)0.0198 (17)
C30.0470 (18)0.0546 (19)0.0502 (18)0.0024 (14)0.0219 (14)0.0019 (14)
C40.0328 (15)0.0393 (15)0.0475 (16)0.0028 (11)0.0158 (13)0.0039 (12)
C50.0365 (15)0.0337 (15)0.0458 (16)0.0012 (12)0.0147 (12)0.0020 (12)
C60.0378 (15)0.0293 (14)0.0483 (16)0.0010 (12)0.0117 (13)0.0003 (12)
C70.0336 (14)0.0344 (15)0.0515 (17)0.0033 (12)0.0159 (13)0.0065 (12)
C80.0469 (18)0.0367 (16)0.064 (2)0.0022 (13)0.0199 (15)0.0097 (14)
C90.0505 (18)0.0384 (16)0.0490 (17)0.0016 (13)0.0231 (14)0.0025 (12)
C100.0516 (17)0.0323 (14)0.0404 (15)0.0016 (12)0.0227 (13)0.0002 (11)
C110.052 (2)0.057 (2)0.0540 (18)0.0038 (15)0.0208 (16)0.0012 (15)
Geometric parameters (Å, º) top
S—O31.430 (2)C3—H3A0.9300
S—O41.433 (2)C4—C71.394 (4)
S—C111.743 (3)C4—C51.490 (4)
S—C101.774 (3)C6—C71.483 (4)
O1—C51.207 (3)C7—C81.376 (4)
N—C51.392 (3)C8—H8A0.9300
N—C61.404 (3)C9—C101.520 (4)
N—C91.457 (3)C9—H9A0.9700
C1—C81.377 (5)C9—H9B0.9700
C1—C21.391 (5)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
O2—C61.210 (3)C11—H11A0.9600
C2—C31.389 (4)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.371 (4)
O3—S—O4116.42 (16)N—C6—C7105.8 (2)
O3—S—C10108.61 (14)C8—C7—C4121.5 (3)
O3—S—C11108.68 (16)C8—C7—C6130.2 (3)
O4—S—C10109.11 (14)C4—C7—C6108.2 (2)
O4—S—C11109.42 (15)C7—C8—C1117.4 (3)
C11—S—C10103.86 (15)C7—C8—H8A121.3
C5—N—C6112.1 (2)C1—C8—H8A121.3
C5—N—C9124.3 (2)N—C9—C10113.3 (2)
C6—N—C9123.5 (2)N—C9—H9A108.9
C8—C1—C2121.4 (3)C10—C9—H9A108.9
C8—C1—H1A119.3N—C9—H9B108.9
C2—C1—H1A119.3C10—C9—H9B108.9
C3—C2—C1120.9 (3)H9A—C9—H9B107.7
C3—C2—H2A119.5C9—C10—S112.58 (19)
C1—C2—H2A119.5C9—C10—H10A109.1
C4—C3—C2117.6 (3)S—C10—H10A109.1
C4—C3—H3A121.2C9—C10—H10B109.1
C2—C3—H3A121.2S—C10—H10B109.1
C3—C4—C7121.1 (3)H10A—C10—H10B107.8
C3—C4—C5130.9 (3)S—C11—H11A109.5
C7—C4—C5108.0 (2)S—C11—H11B109.5
O1—C5—N124.9 (3)H11A—C11—H11B109.5
O1—C5—C4129.1 (3)S—C11—H11C109.5
N—C5—C4105.9 (2)H11A—C11—H11C109.5
O2—C6—N124.4 (3)H11B—C11—H11C109.5
O2—C6—C7129.8 (3)
C8—C1—C2—C30.8 (5)C5—C4—C7—C8179.9 (3)
C1—C2—C3—C40.9 (5)C3—C4—C7—C6179.1 (3)
C2—C3—C4—C70.6 (4)C5—C4—C7—C60.7 (3)
C2—C3—C4—C5179.7 (3)O2—C6—C7—C81.3 (5)
C6—N—C5—O1177.4 (3)N—C6—C7—C8179.5 (3)
C9—N—C5—O16.6 (4)O2—C6—C7—C4179.4 (3)
C6—N—C5—C40.8 (3)N—C6—C7—C40.2 (3)
C9—N—C5—C4175.2 (2)C4—C7—C8—C10.2 (4)
C3—C4—C5—O13.1 (5)C6—C7—C8—C1179.0 (3)
C7—C4—C5—O1177.2 (3)C2—C1—C8—C70.5 (5)
C3—C4—C5—N178.8 (3)C5—N—C9—C10112.9 (3)
C7—C4—C5—N0.9 (3)C6—N—C9—C1062.6 (3)
C5—N—C6—O2178.9 (3)N—C9—C10—S63.7 (3)
C9—N—C6—O25.1 (4)O3—S—C10—C967.7 (2)
C5—N—C6—C70.4 (3)O4—S—C10—C960.2 (2)
C9—N—C6—C7175.6 (2)C11—S—C10—C9176.8 (2)
C3—C4—C7—C80.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.932.343.189 (5)152
C11—H11A···O1ii0.962.513.463 (4)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H11NO4S
Mr253.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.6030 (15), 17.766 (4), 8.9940 (18)
β (°) 112.31 (3)
V3)1123.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.944, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
2182, 2027, 1567
Rint0.030
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.01
No. of reflections2027
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.932.343.189 (5)152
C11—H11A···O1ii0.962.513.463 (4)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKilburn, J. P., Andersen, H. S., Kampen, G. C. T. & Ebdrup, S. (2007). PCT Int. Appl. WO 2007051811.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds