metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m948-m949

Tetra­kis(μ-4-methyl­benzoato-κO:O′)bis­­{[4-(di­methyl­amino)pyridine-κN1]zinc(II)}

aKey Laboratory of Anhui Educational Department, Anhui University of Technology, Maanshan 243002, People's Republic of China, and bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 4 July 2009; accepted 14 July 2009; online 18 July 2009)

In the centrosymmetric title binuclear complex, [Zn2(C8H7O2)4(C7H10N2)2], the Zn atoms [Zn⋯Zn = 3.0287 (6) Å] are bridged by four 4-methyl­benzoate ligands. The four nearest O atoms around each ZnII atom form a distorted square-planar arrangement with the distorted square-pyramidal coordination completed by the pyridine N atom of the 4-(dimethyl­amino)pyridine ligand. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into infinite chains. The chains are further linked by weak C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For potential applications of organometallic complexes, see: Sommerfeldt et al. (2008[Sommerfeldt, H. M., Meermann, C., Tornroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696-4705.]); Huang et al. (2007[Huang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232-3237.]); Neville et al. (2008[Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869-2876.]). Zinc derivatives are used in photodynamic therapy because of their unique photosensitizing properties, see: Tabata et al. (2000[Tabata, K., Fukushima, K. & Okura, I. (2000). J. Porphyrins Phthaolcyanines, 4, 278-284.]); Shi et al. (2008[Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288-296.]); Xiao et al. (2008[Xiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); Yang et al. (2008[Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375-m377.]). For comparative bond lengths, see: Halcrow et al. (2000[Halcrow, M. A., Kilner, C. A. & Thornton-Pett, M. (2000). Acta Cryst. C56, 1425-1426.]); For related structures, see: Yang et al. (2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214.]); You et al. (2003[You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025-m1027.], 2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560-m562.]); Wang et al. (2009[Wang, P., Ma, J.-P., Li, X.-Y., Huang, R.-Q. & Dong, Y.-B. (2009). Acta Cryst. C65, m78-m81.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H7O2)4(C7H10N2)2]

  • Mr = 915.66

  • Monoclinic, P 21 /n

  • a = 8.9311 (18) Å

  • b = 9.967 (2) Å

  • c = 24.756 (5) Å

  • β = 90.64 (3)°

  • V = 2203.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.792

  • 12095 measured reflections

  • 4326 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.03

  • 4326 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—Zn1i 2.0564 (16)
O2—Zn1 2.0626 (15)
O3—Zn1 2.0438 (15)
O4—Zn1i 2.0320 (16)
N1—Zn1 2.0160 (16)
O3—Zn1—O1i 86.16 (7)
O3—Zn1—O2 88.75 (6)
O4i—Zn1—O1i 89.51 (7)
O4i—Zn1—O2 86.67 (7)
O4i—Zn1—O3 157.18 (6)
N1—Zn1—O1i 99.01 (7)
N1—Zn1—O2 103.64 (7)
N1—Zn1—O3 100.83 (7)
N1—Zn1—O4i 101.98 (7)
Symmetry code: (i) -x+2, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21C⋯O3ii 0.96 2.54 3.484 (3) 168
C23—H23BCg1iii 0.96 2.99 3.925 (4) 165
Symmetry codes: (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of atoms C3–C8.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous organometallic complexes have been designed for a number of potential applications, such as in synthetic chemistry (Sommerfeldt et al., 2008), as luminescence materials (Huang et al., 2007) and as magnetic materials (Neville et al., 2008). Zinc derivatives are particularly interesting owing to their unique photosensitizing properties for photodynamic therapy (Tabata et al., 2000; Shi et al., 2008; Xiao et al., 2008; Yang et al., 2008;), magnetic circularly polarized luminescence (MCPL) and magnetic circular dichroism (MCD) spectra. We have reported the structures of a few zinc(II) complexes (Yang et al., 2004; You et al., 2003, 2004). As an extension of our work on the structural characterizations of zinc compounds, we report herein the crystal structure of the title compound.

The title compound is a binuclear compound (Fig. 1), consisting of four 4-methylbenzoato and two 4-(N,N-diamino)pyridine ligands. It has a centre of symmetry. The 4-(N,N-diamino)pyridine ligands are coordinated to Zn atoms through pyridine N atoms only. The 4-methylbenzoato groups act as bridging ligands. The Zn···ZnA distance is 3.0287 (6) Å and the N1-Zn1···Zn1A angle is 169.82 (5) [symmetry code: (A) 2 - x, 2 - y, -z]. The four O atoms of the bridging 4-methylbenzoato ligands around each Zn atom form a distorted square plane (Table 1). A distorted square-pyramidal arrangement around each Zn atom is completed by the pyridine N atom of 4-(N,N-diamino)pyridine ligand (Table 1). The dihedral angle between plane through Zn1, O1, O2, C2, Zn1A, O1A, O2A, C2A and the plane through Zn1, O3, O4, C1, Zn1A, O3A, O4A, C1A is 87.931 (24) °. The Zn-O bonds are in the range of 2.0320 (16)-2.0626 (15) Å, and are in accordance with the corresponding values in a similar compound (Wang et al., 2009). The Zn1-N1 [2.0160 (16) Å] bond is significantly shorter than the corresponding reported values (Halcrow et al., 2000).

In the crystal structure, weak intermolecular C-H···O interactions (Table 2) link the molecules into infinite chains (Fig. 2), in which they are further linked by weak C—H···π interactions (Table 2) to form a three-dimensional network (Fig. 3).

Related literature top

For potential applications of organometallic complexes, see: Sommerfeldt et al. (2008); Huang et al. (2007); Neville et al. (2008). Zinc derivatives are used in photodynamic therapy because of their unique photosensitizing properties, see: Tabata et al. (2000); Shi et al. (2008); Xiao et al. (2008); Yang et al. (2008). For Comparative bond lengths, see: Halcrow et al. (2000); For related structures, see: Yang et al. (2004); You et al. (2003, 2004); Wang et al. (2009). Cg1 is the centroid of atoms C3–C8.

Experimental top

For the preparation of the title compound, zinc oxide (0.5 mmol) and 4-methylbenzoic acid (1 mmol) were dissolved in aqueous ammonia (10 ml, 30%,) and then, 4-(N,N-dimethylamino)pyridine (0.5 mmol) was added. The resulting solution was stirred at room temperature and then filtered. Crystals suitable for X-ray analysis were obtained after 13 to 15 d by volatilization of the solvents.

Refinement top

H atoms were positioned geometrically with C-H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 2 - x, 2 - y, -z]. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The chain formed through C—H···O intermolecular hydrogen bonds. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A partial packing diagram, with C—H···π contacts shown as dashed lines.
Tetrakis(µ-4-methylbenzoato-κO:O')bis{[4- (dimethylamino)pyridine-κN1]zinc(II)} top
Crystal data top
[Zn2(C8H7O2)4(C7H10N2)2]F(000) = 952
Mr = 915.66Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3875 reflections
a = 8.9311 (18) Åθ = 1.8–29.5°
b = 9.967 (2) ŵ = 1.15 mm1
c = 24.756 (5) ÅT = 294 K
β = 90.64 (3)°Block, colorless
V = 2203.5 (8) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4326 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.758, Tmax = 0.792k = 1112
12095 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3207P]
where P = (Fo2 + 2Fc2)/3
4326 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn2(C8H7O2)4(C7H10N2)2]V = 2203.5 (8) Å3
Mr = 915.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9311 (18) ŵ = 1.15 mm1
b = 9.967 (2) ÅT = 294 K
c = 24.756 (5) Å0.30 × 0.20 × 0.20 mm
β = 90.64 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4326 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
3432 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.792Rint = 0.020
12095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4326 reflectionsΔρmin = 0.28 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.13033 (2)0.90381 (2)0.006145 (10)0.05090 (10)
O10.83151 (18)0.93234 (15)0.05487 (7)0.0678 (4)
O21.01833 (16)0.78450 (16)0.04910 (6)0.0653 (4)
O30.98300 (16)0.84236 (16)0.06369 (6)0.0635 (4)
O40.79517 (17)0.98974 (15)0.05820 (6)0.0662 (4)
N11.31222 (17)0.79423 (16)0.02637 (7)0.0513 (4)
N21.67263 (18)0.53691 (18)0.05771 (7)0.0564 (4)
C10.8638 (2)0.8943 (2)0.08022 (9)0.0531 (5)
C20.8981 (2)0.8279 (2)0.06917 (9)0.0535 (5)
C30.8268 (2)0.7505 (2)0.11421 (8)0.0508 (5)
C40.8823 (3)0.6275 (2)0.13030 (9)0.0609 (6)
H40.96390.59030.11210.073*
C50.8182 (3)0.5598 (3)0.17289 (10)0.0756 (7)
H50.85760.47740.18320.091*
C60.6971 (4)0.6111 (3)0.20062 (12)0.0881 (8)
C70.6411 (3)0.7325 (3)0.18418 (12)0.0934 (9)
H70.55890.76890.20230.112*
C80.7040 (3)0.8013 (3)0.14147 (10)0.0724 (6)
H80.66320.88280.13090.087*
C90.8005 (2)0.8393 (2)0.13138 (8)0.0540 (5)
C100.6700 (3)0.8879 (3)0.15302 (11)0.0788 (7)
H100.61510.95270.13440.095*
C110.6197 (3)0.8414 (3)0.20207 (12)0.0911 (9)
H110.53120.87570.21590.109*
C120.6974 (3)0.7456 (3)0.23093 (10)0.0764 (7)
C130.8222 (3)0.6931 (3)0.20795 (10)0.0796 (7)
H130.87360.62450.22560.096*
C140.8740 (3)0.7392 (3)0.15917 (9)0.0699 (6)
H140.96030.70190.14480.084*
C151.4414 (2)0.8023 (2)0.00023 (9)0.0560 (5)
H151.44860.86670.02730.067*
C161.5632 (2)0.7230 (2)0.00943 (9)0.0558 (5)
H161.64990.73540.01040.067*
C171.5585 (2)0.62332 (19)0.04898 (8)0.0483 (5)
C181.4256 (2)0.6191 (2)0.07871 (9)0.0612 (6)
H181.41650.55900.10720.073*
C191.3102 (2)0.7026 (2)0.06594 (9)0.0626 (6)
H191.22340.69550.08620.075*
C201.6662 (3)0.4385 (3)0.10068 (11)0.0752 (7)
H20A1.67060.48330.13500.113*
H20B1.74950.37810.09780.113*
H20C1.57430.38890.09770.113*
C211.8086 (2)0.5430 (2)0.02665 (10)0.0648 (6)
H21A1.78370.55480.01090.097*
H21B1.86370.46110.03130.097*
H21C1.86850.61720.03890.097*
C220.6270 (6)0.5356 (5)0.24752 (17)0.166 (2)
H22A0.65120.58000.28070.249*
H22B0.52030.53350.24340.249*
H22C0.66510.44560.24820.249*
C230.6490 (4)0.7010 (4)0.28691 (11)0.1126 (12)
H23A0.65950.60540.29000.169*
H23B0.54630.72540.29230.169*
H23C0.71080.74400.31380.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04359 (14)0.04260 (15)0.06657 (18)0.00739 (9)0.00287 (10)0.00171 (11)
O10.0702 (10)0.0516 (9)0.0817 (11)0.0032 (7)0.0006 (8)0.0136 (8)
O20.0597 (9)0.0620 (10)0.0741 (10)0.0013 (7)0.0071 (8)0.0082 (8)
O30.0556 (9)0.0614 (9)0.0738 (10)0.0026 (7)0.0160 (7)0.0037 (8)
O40.0654 (9)0.0570 (9)0.0766 (10)0.0070 (7)0.0126 (8)0.0074 (8)
N10.0447 (9)0.0450 (9)0.0641 (10)0.0063 (7)0.0043 (8)0.0011 (8)
N20.0457 (9)0.0522 (10)0.0712 (11)0.0056 (8)0.0056 (8)0.0082 (9)
C10.0511 (11)0.0467 (12)0.0616 (13)0.0043 (9)0.0032 (10)0.0070 (10)
C20.0528 (12)0.0482 (12)0.0598 (12)0.0067 (9)0.0100 (10)0.0005 (10)
C30.0499 (11)0.0485 (11)0.0540 (11)0.0045 (9)0.0080 (9)0.0017 (9)
C40.0607 (13)0.0546 (13)0.0676 (14)0.0030 (10)0.0008 (11)0.0032 (11)
C50.0865 (18)0.0614 (15)0.0790 (17)0.0038 (13)0.0002 (14)0.0168 (13)
C60.098 (2)0.085 (2)0.0801 (18)0.0004 (16)0.0184 (16)0.0201 (15)
C70.092 (2)0.094 (2)0.094 (2)0.0121 (16)0.0355 (16)0.0111 (17)
C80.0743 (15)0.0655 (15)0.0772 (16)0.0103 (12)0.0059 (13)0.0044 (13)
C90.0538 (11)0.0495 (12)0.0587 (12)0.0059 (9)0.0051 (10)0.0104 (10)
C100.0797 (17)0.0779 (18)0.0793 (17)0.0133 (13)0.0220 (14)0.0023 (14)
C110.0867 (19)0.099 (2)0.088 (2)0.0087 (17)0.0367 (16)0.0091 (18)
C120.0894 (19)0.0836 (18)0.0564 (14)0.0188 (15)0.0126 (13)0.0142 (14)
C130.0849 (18)0.0905 (19)0.0635 (15)0.0005 (15)0.0011 (13)0.0089 (14)
C140.0683 (14)0.0770 (16)0.0646 (14)0.0052 (12)0.0088 (11)0.0022 (13)
C150.0511 (11)0.0451 (11)0.0720 (14)0.0026 (9)0.0079 (10)0.0118 (10)
C160.0430 (10)0.0507 (12)0.0738 (14)0.0031 (9)0.0099 (9)0.0090 (11)
C170.0431 (10)0.0436 (11)0.0582 (12)0.0005 (8)0.0043 (9)0.0020 (9)
C180.0523 (12)0.0662 (14)0.0651 (14)0.0066 (10)0.0034 (10)0.0185 (11)
C190.0475 (11)0.0728 (15)0.0679 (14)0.0083 (10)0.0120 (10)0.0096 (12)
C200.0672 (15)0.0716 (16)0.0866 (17)0.0099 (12)0.0103 (13)0.0199 (14)
C210.0490 (12)0.0591 (13)0.0863 (16)0.0112 (10)0.0010 (11)0.0007 (12)
C220.186 (5)0.159 (4)0.150 (4)0.019 (3)0.084 (3)0.075 (3)
C230.145 (3)0.133 (3)0.0599 (16)0.024 (2)0.0253 (18)0.0083 (18)
Geometric parameters (Å, º) top
Zn1—Zn1i3.0287 (6)C12—C131.362 (4)
Zn1—O1i2.0564 (16)C12—C231.523 (4)
Zn1—O4i2.0320 (16)C13—C141.377 (3)
O1—Zn1i2.0564 (16)C13—H130.9300
O2—Zn12.0626 (15)C14—H140.9300
O3—Zn12.0438 (15)C15—N11.337 (3)
O4—Zn1i2.0320 (16)C15—C161.365 (3)
N1—Zn12.0160 (16)C15—H150.9300
C1—O41.253 (2)C16—C171.396 (3)
C1—O31.256 (2)C16—H160.9300
C1—C91.497 (3)C17—N21.350 (2)
C2—O11.252 (3)C17—C181.404 (3)
C2—O21.255 (3)C18—C191.359 (3)
C2—C31.492 (3)C18—H180.9300
C3—C81.378 (3)C19—N11.340 (3)
C3—C41.383 (3)C19—H190.9300
C4—C51.372 (3)C20—N21.449 (3)
C4—H40.9300C20—H20A0.9600
C5—C61.373 (4)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C71.373 (4)C21—N21.446 (3)
C6—C221.513 (4)C21—H21A0.9600
C7—C81.375 (4)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C8—H80.9300C22—H22A0.9600
C9—C141.375 (3)C22—H22B0.9600
C9—C101.376 (3)C22—H22C0.9600
C10—C111.379 (4)C23—H23A0.9600
C10—H100.9300C23—H23B0.9600
C11—C121.376 (4)C23—H23C0.9600
C11—H110.9300
O1i—Zn1—Zn1i71.24 (5)C9—C10—H10119.7
O1i—Zn1—O2157.33 (6)C11—C10—H10119.7
O2—Zn1—Zn1i86.09 (5)C12—C11—C10121.5 (3)
O3—Zn1—Zn1i76.09 (5)C12—C11—H11119.2
O3—Zn1—O1i86.16 (7)C10—C11—H11119.2
O3—Zn1—O288.75 (6)C13—C12—C11117.4 (2)
O4i—Zn1—Zn1i81.30 (5)C13—C12—C23120.6 (3)
O4i—Zn1—O1i89.51 (7)C11—C12—C23121.9 (3)
O4i—Zn1—O286.67 (7)C12—C13—C14121.5 (3)
O4i—Zn1—O3157.18 (6)C12—C13—H13119.2
N1—Zn1—Zn1i169.82 (5)C14—C13—H13119.2
N1—Zn1—O1i99.01 (7)C9—C14—C13121.2 (2)
N1—Zn1—O2103.64 (7)C9—C14—H14119.4
N1—Zn1—O3100.83 (7)C13—C14—H14119.4
N1—Zn1—O4i101.98 (7)N1—C15—C16124.71 (19)
C2—O1—Zn1i138.60 (15)N1—C15—H15117.6
C2—O2—Zn1118.06 (14)C16—C15—H15117.6
C1—O3—Zn1131.15 (15)C15—C16—C17120.32 (19)
C1—O4—Zn1i125.07 (14)C15—C16—H16119.8
C15—N1—C19114.85 (17)C17—C16—H16119.8
C15—N1—Zn1122.82 (14)N2—C17—C16122.49 (18)
C19—N1—Zn1122.25 (13)N2—C17—C18122.56 (19)
C17—N2—C21121.69 (18)C16—C17—C18114.95 (18)
C17—N2—C20120.89 (18)C19—C18—C17120.2 (2)
C21—N2—C20117.35 (18)C19—C18—H18119.9
O4—C1—O3125.7 (2)C17—C18—H18119.9
O4—C1—C9117.31 (19)N1—C19—C18124.83 (19)
O3—C1—C9117.00 (19)N1—C19—H19117.6
O1—C2—O2125.5 (2)C18—C19—H19117.6
O1—C2—C3116.2 (2)N2—C20—H20A109.5
O2—C2—C3118.28 (19)N2—C20—H20B109.5
C8—C3—C4118.0 (2)H20A—C20—H20B109.5
C8—C3—C2120.5 (2)N2—C20—H20C109.5
C4—C3—C2121.5 (2)H20A—C20—H20C109.5
C5—C4—C3120.7 (2)H20B—C20—H20C109.5
C5—C4—H4119.7N2—C21—H21A109.5
C3—C4—H4119.7N2—C21—H21B109.5
C4—C5—C6121.4 (2)H21A—C21—H21B109.5
C4—C5—H5119.3N2—C21—H21C109.5
C6—C5—H5119.3H21A—C21—H21C109.5
C7—C6—C5117.9 (3)H21B—C21—H21C109.5
C7—C6—C22121.1 (3)C6—C22—H22A109.5
C5—C6—C22121.0 (3)C6—C22—H22B109.5
C6—C7—C8121.4 (3)H22A—C22—H22B109.5
C6—C7—H7119.3C6—C22—H22C109.5
C8—C7—H7119.3H22A—C22—H22C109.5
C7—C8—C3120.7 (2)H22B—C22—H22C109.5
C7—C8—H8119.7C12—C23—H23A109.5
C3—C8—H8119.7C12—C23—H23B109.5
C14—C9—C10117.6 (2)H23A—C23—H23B109.5
C14—C9—C1120.44 (19)C12—C23—H23C109.5
C10—C9—C1122.0 (2)H23A—C23—H23C109.5
C9—C10—C11120.7 (3)H23B—C23—H23C109.5
O1—C2—C3—C86.7 (3)C16—C15—N1—Zn1174.77 (17)
O2—C2—C3—C8172.9 (2)C18—C19—N1—C151.8 (3)
O1—C2—C3—C4174.11 (19)C18—C19—N1—Zn1174.94 (19)
O2—C2—C3—C46.3 (3)C16—C17—N2—C210.5 (3)
C8—C3—C4—C51.3 (3)C18—C17—N2—C21180.0 (2)
C2—C3—C4—C5177.9 (2)C16—C17—N2—C20177.3 (2)
C3—C4—C5—C60.4 (4)C18—C17—N2—C203.2 (3)
C4—C5—C6—C70.4 (5)O2—C2—O1—Zn1i9.7 (4)
C4—C5—C6—C22179.9 (3)C3—C2—O1—Zn1i169.87 (15)
C5—C6—C7—C80.2 (5)O1—C2—O2—Zn17.3 (3)
C22—C6—C7—C8179.8 (4)C3—C2—O2—Zn1172.26 (13)
C6—C7—C8—C30.7 (5)O4—C1—O3—Zn111.8 (3)
C4—C3—C8—C71.5 (4)C9—C1—O3—Zn1166.70 (13)
C2—C3—C8—C7177.8 (2)O3—C1—O4—Zn1i5.9 (3)
O4—C1—C9—C14176.7 (2)C9—C1—O4—Zn1i172.51 (13)
O3—C1—C9—C141.9 (3)C15—N1—Zn1—O4i0.20 (17)
O4—C1—C9—C101.8 (3)C19—N1—Zn1—O4i176.33 (16)
O3—C1—C9—C10179.6 (2)C15—N1—Zn1—O3179.00 (16)
C14—C9—C10—C112.9 (4)C19—N1—Zn1—O34.47 (18)
C1—C9—C10—C11175.6 (2)C15—N1—Zn1—O1i91.22 (17)
C9—C10—C11—C120.0 (5)C19—N1—Zn1—O1i92.25 (17)
C10—C11—C12—C133.3 (5)C15—N1—Zn1—O289.65 (17)
C10—C11—C12—C23175.5 (3)C19—N1—Zn1—O286.88 (17)
C11—C12—C13—C143.7 (4)C15—N1—Zn1—Zn1i107.6 (3)
C23—C12—C13—C14175.1 (3)C19—N1—Zn1—Zn1i75.8 (3)
C10—C9—C14—C132.6 (4)C1—O3—Zn1—N1161.67 (19)
C1—C9—C14—C13176.0 (2)C1—O3—Zn1—O4i16.3 (3)
C12—C13—C14—C90.8 (4)C1—O3—Zn1—O1i63.22 (19)
N1—C15—C16—C170.9 (3)C1—O3—Zn1—O294.7 (2)
C15—C16—C17—N2175.8 (2)C1—O3—Zn1—Zn1i8.39 (18)
C15—C16—C17—C183.8 (3)C2—O2—Zn1—N1179.95 (14)
N2—C17—C18—C19175.6 (2)C2—O2—Zn1—O4i78.43 (16)
C16—C17—C18—C193.9 (3)C2—O2—Zn1—O379.21 (15)
C17—C18—C19—N11.2 (4)C2—O2—Zn1—O1i2.3 (3)
C16—C15—N1—C192.0 (3)C2—O2—Zn1—Zn1i3.07 (15)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21C···O3ii0.962.543.484 (3)168
C23—H23B···Cg1iii0.962.993.925 (4)165
Symmetry codes: (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C8H7O2)4(C7H10N2)2]
Mr915.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.9311 (18), 9.967 (2), 24.756 (5)
β (°) 90.64 (3)
V3)2203.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
12095, 4326, 3432
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.03
No. of reflections4326
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—Zn1i2.0564 (16)O4—Zn1i2.0320 (16)
O2—Zn12.0626 (15)N1—Zn12.0160 (16)
O3—Zn12.0438 (15)
O3—Zn1—O1i86.16 (7)N1—Zn1—O1i99.01 (7)
O3—Zn1—O288.75 (6)N1—Zn1—O2103.64 (7)
O4i—Zn1—O1i89.51 (7)N1—Zn1—O3100.83 (7)
O4i—Zn1—O286.67 (7)N1—Zn1—O4i101.98 (7)
O4i—Zn1—O3157.18 (6)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21C···O3ii0.962.543.484 (3)168.2
C23—H23B···Cg1iii0.962.993.925 (4)165.00
Symmetry codes: (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.
 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHalcrow, M. A., Kilner, C. A. & Thornton-Pett, M. (2000). Acta Cryst. C56, 1425–1426.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232–3237.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationSommerfeldt, H. M., Meermann, C., Tornroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696–4705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTabata, K., Fukushima, K. & Okura, I. (2000). J. Porphyrins Phthaolcyanines, 4, 278–284.  CrossRef CAS Google Scholar
First citationWang, P., Ma, J.-P., Li, X.-Y., Huang, R.-Q. & Dong, Y.-B. (2009). Acta Cryst. C65, m78–m81.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560–m562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m948-m949
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds