organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1818-o1819

4-[(Z)-(2-Eth­­oxy-4-oxochroman-3-yl­­idene)methyl­amino]benzene­sulfonamide monohydrate

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 July 2009; accepted 5 July 2009; online 11 July 2009)

In the mol­ecule of the title compound, C18H18N2O5S·H2O, the heterocyclic ring adopts a twisted conformation, while the aromatic rings are oriented at a dihedral angle of 45.46 (3)°. Intra­molecular C—H⋯O and N—H⋯O inter­actions result in the formations of planar five- and six-membered rings. In the crystal structure, N—H⋯O hydrogen bonds link the NH2 and SO2 groups through R22(8) ring motifs, while C—H⋯O and N—H⋯O hydrogen bonds result in the formation of R21(7) ring motifs. N—H⋯O and O—H⋯O hydrogen bonds link the uncoordinated water mol­ecules, forming a polymeric network. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Al-Zaydi et al. (2007[Al-Zaydi, K. M., Borik, R. M. & Elnagdi, M. H. (2007). J. Heterocycl. Chem. 44, 1187-1189.]); Chohan et al. (2008[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.], 2009[Chohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o57.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O5S·H2O

  • Mr = 392.42

  • Triclinic, [P \overline 1]

  • a = 8.2727 (6) Å

  • b = 10.0166 (8) Å

  • c = 11.5830 (9) Å

  • α = 102.480 (5)°

  • β = 97.049 (4)°

  • γ = 96.731 (4)°

  • V = 919.77 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.28 × 0.10 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 18417 measured reflections

  • 4729 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.125

  • S = 1.00

  • 4729 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.04 2.696 (3) 132
N2—H21⋯O6i 0.91 (3) 1.94 (3) 2.838 (4) 169 (3)
N2—H22⋯O2ii 0.85 (3) 2.22 (3) 3.027 (3) 159 (3)
O6—H61⋯O5 0.90 (4) 2.10 (4) 2.999 (3) 176.7 (16)
O6—H62⋯O4iii 0.92 (3) 1.90 (3) 2.784 (3) 161 (3)
C2—H2⋯O2iv 0.93 2.42 3.300 (4) 157
C9—H9⋯O1v 1.04 (3) 2.54 (3) 3.472 (3) 149 (2)
C13—H13⋯O2ii 0.93 2.54 3.418 (3) 158
C15—H15⋯O1 0.93 2.50 2.884 (3) 105
C16—H16⋯Cg1vi 0.93 2.95 3.565 (3) 125
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z-1; (iii) -x, -y+1, -z; (iv) -x, -y, -z; (v) -x+1, -y, -z; (vi) x+1, y, z. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have wide range of applications in medicinal chemistry. Keeping in wiew the importance of sulfonamide derivatives, we have synthesized the title compound, (I). We report herein its crystal structure.

The crystal structures of 4-[(E)-(5-chloro-2-hydroxybenzylidene)amino] benzenesulfonamide, (II) (Chohan et al., 2009) and 4-{2-[(5-chloro-2 -hydroxybenzylidene)amino]ethyl}benzenesulfonamide, (III) (Chohan et al., 2008) have been published, which contain the benzenesulfonamide. The crystal structure of 3-(4-chlorophenylhydrazono)-2-ethoxychroman-4-one, (IV) (Al-Zaydi et al., 2007) has also been published, which contains the common moiety of (I) other than benzenesulfonamide.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring B (O3/C1/C6-C9) is not planar, having total puckering amplitude, QT, of 0.444 (3) Å and twisted conformation [ϕ = 84.93 (3) and θ = 70.07 (3) °] (Cremer & Pople, 1975). Rings A (C1-C6) and C (C11-C16) are, of course, planar, and they are oriented at a dihedral angle of A/C = 45.46 (3)°. Intramolecular C-H···O and N-H···O interactions (Table 1) result in the formations of planar five- and six-membered rings D (S1/O1/C14/C15/H15) and E (O4/N1/C7/C8/C10/H1).

In the crystal structure, N-H···O hydrogen bonds link the NH2 and SO2 groups through R22(8) ring motifs, while C-H···O and N-H···O hydrogen bonds (Table 1) result in the formations of R21(7) ring motifs (Bernstein et al., 1995). On the other hand, N-H···O and O-H···O hydrogen bonds (Table 1) link the lattice water molecules to form a polymeric network (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction.

Related literature top

For related structures, see: Al-Zaydi et al. (2007); Chohan et al. (2008); Chohan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring.

Experimental top

3-Formylchromone (0.174 g, 1 mmol) in ethanol (5-7 ml) was stirred with heating until dissolved, then catalytic amount of p-toluenesulfonic acid was added, followed by 4-aminobenzenesulfonamide (0.172 g, 1 mmol) in equal amount of ethanol. Reaction mixture was refluxed with stirring for 4 h. The clear yellow solution was kept overnight and solvent was evaporated to yield bright yellow crystalline solid. Product was recrystallized from a mixture of ethanol and acetone (1:1) to yield fine transparent yellow needles.

Refinement top

H atoms (for NH2, OH2 and methine) were located in a difference Fourier map and their coordinates were refined. The remaining H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-[(Z)-(2-Ethoxy-4-oxochroman-3-ylidene)methylamino]benzenesulfonamide monohydrate top
Crystal data top
C18H18N2O5S·H2OZ = 2
Mr = 392.42F(000) = 412
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2727 (6) ÅCell parameters from 4729 reflections
b = 10.0166 (8) Åθ = 2.4–28.8°
c = 11.5830 (9) ŵ = 0.21 mm1
α = 102.480 (5)°T = 296 K
β = 97.049 (4)°Needle, yellow
γ = 96.731 (4)°0.28 × 0.10 × 0.09 mm
V = 919.77 (12) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4729 independent reflections
Radiation source: fine-focus sealed tube2022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.4°
ω scansh = 117
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.973, Tmax = 0.982l = 1515
18417 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
4729 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H18N2O5S·H2Oγ = 96.731 (4)°
Mr = 392.42V = 919.77 (12) Å3
Triclinic, P1Z = 2
a = 8.2727 (6) ÅMo Kα radiation
b = 10.0166 (8) ŵ = 0.21 mm1
c = 11.5830 (9) ÅT = 296 K
α = 102.480 (5)°0.28 × 0.10 × 0.09 mm
β = 97.049 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4729 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2022 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.070
18417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
4729 reflectionsΔρmin = 0.22 e Å3
260 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65357 (9)0.03978 (8)0.32059 (7)0.0444 (3)
O10.7917 (2)0.0360 (2)0.23543 (17)0.0608 (8)
O20.5862 (2)0.08348 (18)0.41008 (16)0.0501 (7)
O30.2219 (2)0.19797 (19)0.24854 (17)0.0513 (7)
O40.1312 (2)0.3631 (2)0.03129 (17)0.0580 (8)
O50.0431 (2)0.3149 (2)0.31661 (16)0.0510 (7)
O60.1102 (3)0.5917 (2)0.2582 (2)0.0705 (9)
N10.1144 (3)0.2091 (2)0.0546 (2)0.0478 (9)
N20.7070 (3)0.1526 (3)0.3923 (3)0.0559 (10)
C10.3062 (3)0.3009 (3)0.2233 (3)0.0412 (10)
C20.4381 (3)0.3273 (3)0.2838 (3)0.0558 (11)
C30.5269 (4)0.4275 (3)0.2598 (3)0.0628 (11)
C40.4871 (4)0.5029 (3)0.1782 (3)0.0588 (12)
C50.3605 (3)0.4734 (3)0.1166 (3)0.0491 (11)
C60.2684 (3)0.3703 (3)0.1377 (2)0.0376 (9)
C70.1412 (3)0.3271 (3)0.0643 (2)0.0403 (9)
C80.0367 (3)0.2398 (3)0.1090 (2)0.0405 (9)
C90.0540 (3)0.2094 (3)0.2276 (3)0.0470 (11)
C100.0843 (3)0.1890 (3)0.0508 (3)0.0469 (11)
C110.2442 (3)0.1665 (3)0.1153 (3)0.0424 (10)
C120.2237 (3)0.1498 (3)0.2378 (3)0.0479 (11)
C130.3481 (3)0.1123 (3)0.3005 (2)0.0463 (10)
C140.4946 (3)0.0904 (3)0.2408 (2)0.0392 (9)
C150.5153 (3)0.1090 (3)0.1186 (3)0.0455 (10)
C160.3895 (3)0.1473 (3)0.0555 (2)0.0471 (10)
C170.0555 (4)0.2828 (4)0.4337 (3)0.0756 (16)
C180.1854 (4)0.3812 (4)0.5152 (3)0.0916 (16)
H10.047550.252640.089690.0574*
H20.465460.277650.339620.0668*
H30.616090.445130.299400.0754*
H40.546060.573260.165350.0707*
H50.335110.522370.059870.0590*
H90.013 (3)0.120 (3)0.243 (2)0.0563*
H100.150630.136530.087530.0562*
H120.125140.163950.278150.0573*
H130.334040.101570.383010.0557*
H150.614130.095920.077950.0545*
H160.403980.159970.027220.0565*
H17A0.080480.189550.427670.0909*
H17B0.048510.288400.463820.0909*
H18A0.166030.473670.514330.1377*
H18B0.289920.367450.490300.1377*
H18C0.186040.367520.594770.1377*
H210.757 (3)0.234 (3)0.342 (3)0.0671*
H220.634 (4)0.155 (3)0.450 (3)0.0671*
H610.086 (4)0.508 (4)0.274 (3)0.0846*
H620.110 (4)0.586 (3)0.178 (3)0.0846*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0396 (4)0.0481 (5)0.0453 (5)0.0093 (3)0.0075 (3)0.0083 (4)
O10.0433 (11)0.0813 (16)0.0562 (14)0.0244 (10)0.0001 (10)0.0088 (11)
O20.0598 (12)0.0394 (12)0.0470 (12)0.0060 (10)0.0096 (10)0.0015 (10)
O30.0436 (11)0.0510 (13)0.0676 (14)0.0071 (10)0.0156 (10)0.0278 (11)
O40.0622 (13)0.0742 (15)0.0450 (13)0.0114 (11)0.0120 (10)0.0273 (12)
O50.0523 (12)0.0600 (14)0.0410 (12)0.0048 (10)0.0064 (10)0.0149 (11)
O60.0939 (17)0.0584 (15)0.0519 (14)0.0130 (13)0.0058 (13)0.0132 (13)
N10.0435 (14)0.0551 (16)0.0440 (15)0.0087 (12)0.0052 (12)0.0098 (13)
N20.0537 (17)0.0521 (17)0.0577 (19)0.0052 (14)0.0098 (13)0.0099 (15)
C10.0357 (15)0.0402 (17)0.0482 (18)0.0026 (14)0.0053 (14)0.0140 (15)
C20.0441 (18)0.069 (2)0.063 (2)0.0092 (17)0.0175 (16)0.0283 (18)
C30.0491 (19)0.079 (2)0.067 (2)0.0201 (19)0.0192 (17)0.020 (2)
C40.061 (2)0.058 (2)0.060 (2)0.0250 (17)0.0078 (18)0.0118 (18)
C50.0515 (18)0.0467 (19)0.0511 (19)0.0082 (16)0.0034 (16)0.0176 (16)
C60.0356 (15)0.0384 (16)0.0357 (16)0.0013 (13)0.0018 (13)0.0079 (14)
C70.0411 (16)0.0420 (17)0.0328 (16)0.0036 (14)0.0037 (14)0.0045 (14)
C80.0365 (15)0.0442 (17)0.0399 (17)0.0053 (14)0.0063 (14)0.0079 (14)
C90.0425 (17)0.052 (2)0.050 (2)0.0096 (16)0.0121 (15)0.0154 (17)
C100.0437 (17)0.0494 (19)0.0453 (19)0.0031 (15)0.0011 (15)0.0114 (15)
C110.0353 (16)0.0406 (17)0.0481 (19)0.0032 (14)0.0076 (15)0.0043 (14)
C120.0400 (16)0.059 (2)0.0435 (19)0.0105 (15)0.0002 (15)0.0115 (16)
C130.0452 (17)0.059 (2)0.0350 (16)0.0122 (15)0.0045 (14)0.0102 (15)
C140.0375 (15)0.0382 (16)0.0401 (17)0.0032 (13)0.0050 (13)0.0073 (14)
C150.0420 (16)0.0506 (19)0.0392 (18)0.0047 (14)0.0021 (14)0.0065 (15)
C160.0441 (17)0.062 (2)0.0294 (15)0.0028 (15)0.0008 (14)0.0035 (14)
C170.087 (3)0.094 (3)0.053 (2)0.018 (2)0.015 (2)0.028 (2)
C180.099 (3)0.116 (3)0.051 (2)0.013 (3)0.010 (2)0.014 (2)
Geometric parameters (Å, º) top
S1—O11.425 (2)C8—C101.361 (4)
S1—O21.433 (2)C8—C91.490 (4)
S1—N21.594 (3)C11—C161.367 (4)
S1—C141.759 (3)C11—C121.379 (5)
O3—C11.372 (3)C12—C131.373 (4)
O3—C91.435 (3)C13—C141.385 (4)
O4—C71.245 (3)C14—C151.374 (4)
O5—C91.397 (4)C15—C161.387 (4)
O5—C171.454 (4)C17—C181.455 (5)
O6—H620.92 (3)C2—H20.9300
O6—H610.90 (4)C3—H30.9300
N1—C111.412 (4)C4—H40.9300
N1—C101.327 (4)C5—H50.9300
N1—H10.8600C9—H91.04 (3)
N2—H210.91 (3)C10—H100.9300
N2—H220.85 (3)C12—H120.9300
C1—C61.374 (4)C13—H130.9300
C1—C21.388 (4)C15—H150.9300
C2—C31.367 (4)C16—H160.9300
C3—C41.378 (5)C17—H17B0.9700
C4—C51.363 (4)C17—H17A0.9700
C5—C61.398 (4)C18—H18C0.9600
C6—C71.478 (3)C18—H18A0.9600
C7—C81.429 (4)C18—H18B0.9600
O1···N1i3.239 (3)C7···H12.5600
O2···C13ii3.418 (3)C7···H612.98 (4)
O2···N2ii3.027 (3)C7···H623.06 (3)
O2···C2iii3.300 (4)C8···H612.93 (4)
O3···C13iii3.364 (4)C9···H612.99 (4)
O4···O4iv3.181 (3)C10···H162.7300
O4···O6iv2.784 (3)C11···H5iv3.0300
O4···N12.696 (3)C12···H9iii3.02 (3)
O5···C63.281 (3)C16···H102.7400
O5···O62.999 (3)H1···O42.0400
O6···C73.374 (3)H1···O1vii2.9200
O6···O52.999 (3)H1···C72.5600
O6···N2v2.838 (4)H1···H122.3700
O6···O4iv2.784 (3)H1···H62iv2.5000
O1···H152.5000H2···O2iii2.4200
O1···H9vi2.54 (3)H3···O6vii2.8900
O1···H1i2.9200H4···H5ix2.6000
O1···H10vi2.7200H5···C5ix3.0500
O2···H22ii2.22 (3)H5···C4ix2.9100
O2···H13ii2.5400H5···O42.6200
O2···H2iii2.4200H5···C11iv3.0300
O3···H17B2.6300H5···H4ix2.6000
O4···H52.6200H9···H102.4000
O4···H62iv1.90 (3)H9···C12iii3.02 (3)
O4···H12.0400H9···H17A2.1200
O5···H612.10 (4)H9···O1vi2.54 (3)
O6···H3i2.8900H10···C162.7400
O6···H21v1.94 (3)H10···H162.2900
N1···O1vii3.239 (3)H10···O1vi2.7200
N1···O42.696 (3)H10···H92.4000
N2···O6v2.838 (4)H12···H12.3700
N2···O2ii3.027 (3)H13···O2ii2.5400
C2···C18viii3.571 (5)H15···O12.5000
C2···O2iii3.300 (4)H15···C7i2.9300
C4···C5ix3.560 (5)H16···C1i3.0600
C5···C5ix3.505 (4)H16···C102.7300
C5···C4ix3.560 (5)H16···H102.2900
C6···C16vii3.579 (4)H17A···H92.1200
C6···O53.281 (3)H17B···O32.6300
C7···O63.374 (3)H21···H62v2.37 (5)
C7···C15vii3.522 (4)H21···O6v1.94 (3)
C13···O3iii3.364 (4)H22···O2ii2.22 (3)
C13···O2ii3.418 (3)H61···O52.10 (4)
C15···C7i3.522 (4)H61···C72.98 (4)
C16···C6i3.579 (4)H61···C82.93 (4)
C18···C2viii3.571 (5)H61···C92.99 (4)
C1···H16vii3.0600H62···C73.06 (3)
C4···H5ix2.9100H62···O4iv1.90 (3)
C5···H5ix3.0500H62···H1iv2.5000
C7···H15vii2.9300H62···H21v2.37 (5)
O1—S1—O2118.76 (12)C12—C13—C14120.0 (2)
O1—S1—N2107.72 (14)S1—C14—C13120.33 (17)
O1—S1—C14107.54 (11)S1—C14—C15120.1 (2)
O2—S1—N2105.54 (15)C13—C14—C15119.5 (2)
O2—S1—C14107.37 (12)C14—C15—C16120.3 (2)
N2—S1—C14109.74 (15)C11—C16—C15119.8 (2)
C1—O3—C9115.5 (2)O5—C17—C18109.0 (3)
C9—O5—C17112.4 (2)C1—C2—H2121.00
H61—O6—H62112 (3)C3—C2—H2121.00
C10—N1—C11127.0 (2)C4—C3—H3119.00
C10—N1—H1116.00C2—C3—H3119.00
C11—N1—H1117.00C5—C4—H4120.00
S1—N2—H22113 (2)C3—C4—H4120.00
H21—N2—H22119 (3)C4—C5—H5120.00
S1—N2—H21112 (2)C6—C5—H5120.00
O3—C1—C2117.0 (3)O3—C9—H9105.4 (14)
O3—C1—C6122.0 (2)O5—C9—H9104.0 (14)
C2—C1—C6121.0 (3)C8—C9—H9116.5 (13)
C1—C2—C3118.8 (3)C8—C10—H10118.00
C2—C3—C4121.4 (3)N1—C10—H10118.00
C3—C4—C5119.4 (3)C11—C12—H12120.00
C4—C5—C6120.7 (3)C13—C12—H12120.00
C1—C6—C7119.4 (3)C12—C13—H13120.00
C1—C6—C5118.7 (2)C14—C13—H13120.00
C5—C6—C7121.8 (2)C16—C15—H15120.00
O4—C7—C6120.9 (2)C14—C15—H15120.00
O4—C7—C8123.5 (2)C15—C16—H16120.00
C6—C7—C8115.5 (2)C11—C16—H16120.00
C7—C8—C10122.8 (2)O5—C17—H17A110.00
C7—C8—C9118.8 (2)C18—C17—H17A110.00
C9—C8—C10118.3 (3)C18—C17—H17B110.00
O3—C9—O5109.9 (2)O5—C17—H17B110.00
O5—C9—C8108.6 (2)H17A—C17—H17B108.00
O3—C9—C8112.1 (2)C17—C18—H18B109.00
N1—C10—C8124.6 (3)C17—C18—H18C110.00
C12—C11—C16120.1 (2)C17—C18—H18A109.00
N1—C11—C16121.8 (3)H18A—C18—H18C109.00
N1—C11—C12118.1 (2)H18B—C18—H18C109.00
C11—C12—C13120.3 (2)H18A—C18—H18B109.00
O1—S1—C14—C13175.5 (2)C4—C5—C6—C7174.1 (3)
O1—S1—C14—C154.3 (3)C1—C6—C7—O4162.4 (3)
O2—S1—C14—C1355.6 (3)C1—C6—C7—C815.9 (4)
O2—S1—C14—C15124.6 (2)C5—C6—C7—O412.7 (4)
N2—S1—C14—C1358.6 (3)C5—C6—C7—C8169.0 (3)
N2—S1—C14—C15121.2 (3)O4—C7—C8—C9176.8 (3)
C9—O3—C1—C2154.9 (3)O4—C7—C8—C100.5 (4)
C9—O3—C1—C628.5 (4)C6—C7—C8—C94.9 (4)
C1—O3—C9—O573.9 (3)C6—C7—C8—C10178.7 (3)
C1—O3—C9—C847.0 (3)C7—C8—C9—O335.4 (4)
C17—O5—C9—O366.6 (3)C7—C8—C9—O586.2 (3)
C17—O5—C9—C8170.5 (2)C10—C8—C9—O3148.0 (3)
C9—O5—C17—C18167.6 (3)C10—C8—C9—O590.4 (3)
C11—N1—C10—C8175.7 (3)C7—C8—C10—N13.0 (5)
C10—N1—C11—C12156.4 (3)C9—C8—C10—N1179.4 (3)
C10—N1—C11—C1626.2 (4)N1—C11—C12—C13178.2 (3)
O3—C1—C2—C3179.0 (3)C16—C11—C12—C130.8 (5)
C6—C1—C2—C32.3 (5)N1—C11—C16—C15178.3 (3)
O3—C1—C6—C5179.6 (3)C12—C11—C16—C151.0 (5)
O3—C1—C6—C74.4 (4)C11—C12—C13—C140.3 (5)
C2—C1—C6—C53.1 (4)C12—C13—C14—S1179.0 (2)
C2—C1—C6—C7172.2 (3)C12—C13—C14—C151.2 (5)
C1—C2—C3—C40.6 (5)S1—C14—C15—C16179.2 (2)
C2—C3—C4—C52.6 (5)C13—C14—C15—C161.0 (5)
C3—C4—C5—C61.7 (5)C14—C15—C16—C110.1 (5)
C4—C5—C6—C11.1 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x1, y, z; (viii) x, y+1, z+1; (ix) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.042.696 (3)132
N2—H21···O6v0.91 (3)1.94 (3)2.838 (4)169 (3)
N2—H22···O2ii0.85 (3)2.22 (3)3.027 (3)159 (3)
O6—H61···O50.90 (4)2.10 (4)2.999 (3)176.7 (16)
O6—H62···O4iv0.92 (3)1.90 (3)2.784 (3)161 (3)
C2—H2···O2iii0.932.423.300 (4)157
C9—H9···O1vi1.04 (3)2.54 (3)3.472 (3)149 (2)
C13—H13···O2ii0.932.543.418 (3)158
C15—H15···O10.932.502.884 (3)105
C16—H16···Cg1i0.932.953.565 (3)125
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O5S·H2O
Mr392.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2727 (6), 10.0166 (8), 11.5830 (9)
α, β, γ (°)102.480 (5), 97.049 (4), 96.731 (4)
V3)919.77 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.10 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
18417, 4729, 2022
Rint0.070
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.125, 1.00
No. of reflections4729
No. of parameters260
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.042.696 (3)132
N2—H21···O6i0.91 (3)1.94 (3)2.838 (4)169 (3)
N2—H22···O2ii0.85 (3)2.22 (3)3.027 (3)159 (3)
O6—H61···O50.90 (4)2.10 (4)2.999 (3)176.7 (16)
O6—H62···O4iii0.92 (3)1.90 (3)2.784 (3)161 (3)
C2—H2···O2iv0.932.423.300 (4)157
C9—H9···O1v1.04 (3)2.54 (3)3.472 (3)149 (2)
C13—H13···O2ii0.932.543.418 (3)158
C15—H15···O10.932.502.884 (3)105
C16—H16···Cg1vi0.932.953.565 (3)125
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z1; (iii) x, y+1, z; (iv) x, y, z; (v) x+1, y, z; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAl-Zaydi, K. M., Borik, R. M. & Elnagdi, M. H. (2007). J. Heterocycl. Chem. 44, 1187–1189.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1818-o1819
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds