organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1834-o1835

(2-Amino­phen­yl)[(5S)-5-hydr­­oxy-3,5-di­methyl-4,5-di­hydro-1H-pyrazol-1-yl]methanone

aInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 July 2009; accepted 6 July 2009; online 11 July 2009)

In the mol­ecule of the title compound, C12H15N3O2, the pyrazole ring is oriented at a dihedral angle of 49.64 (6)° with respect to the benzene ring. Intra­molecular O—H⋯O, N—H⋯O and C—H⋯O inter­actions result in the formation of a trifurcated hydrogen bond. In the crystal structure, inter­molecular N—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules, forming a network structure.

Related literature

For general background to the diverse medical potential of pyrazoles and their modified forms, see: Gürsoy et al. (2000[Gürsoy, A., Demiryak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]); Lynch & McClenaghan (2005[Lynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2349-o2351.]). For the biological activity of pyrazolopyrimidines, see: Shaabani et al. (2009[Shaabani, A., Seyyedhamzeh, M., Maleki, A., Behnam, M. & Rezazadeh, F. (2009). Tetrahedron Lett. 50, 2911-2913.]). For synthetic procedures for the preparation of the 4,5-dihydro­pyrrazole nucleus bearing various functionalities on the ring, see: Bahreni et al. (2009[Bahreni, Z., Rahmani, H. & Ng, S. W. (2009). Acta Cryst. E65, o510.]); Kumarasinghe et al. (2009[Kumarasinghe, I. R., Hruby, V. J. & Nichol, G. S. (2009). Acta Cryst. E65, o1170.]); Liu et al. (2009[Liu, Z., Liu, K. K.-C., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1089.]); Lynch & McClenaghan (2005[Lynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2349-o2351.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O2

  • Mr = 233.27

  • Orthorhombic, P b c n

  • a = 23.5705 (7) Å

  • b = 11.3547 (4) Å

  • c = 9.1848 (3) Å

  • V = 2458.18 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.984

  • 14464 measured reflections

  • 3163 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.04

  • 3163 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.868 (18) 2.181 (18) 2.8351 (16) 131.9 (15)
N1—H1A⋯O1i 0.868 (18) 2.380 (17) 2.9882 (15) 127.4 (15)
N1—H1B⋯O1ii 0.892 (18) 2.166 (18) 3.0277 (16) 162.4 (16)
O2—H2⋯O1 0.82 2.52 2.9527 (14) 114
O2—H2⋯N1i 0.82 2.17 2.9741 (16) 165
C6—H6⋯N3 0.93 2.60 2.9499 (18) 103
C12—H12C⋯O1 0.96 2.56 3.0548 (19) 112
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The chemistry of pyrazoles and their modified forms are of great interest to synthetic medicinal researchers because of their diverse medicinal potential reported in the literature including analgesic (Gürsoy et al. 2000), antiinflammatory (Lynch & McClenaghan, 2005) and other therapeutic functions. Pyrazolopyrimidines have shown wide ranging biological activities including vasodilatory, antihypertensive, antiepileptic, anxiolytic, antidepressant and oncolytic while pyrazolopyridines have exhibited anxiolytic, xanthine oxidase inhibitors, cholesterol formation inhibitors and potential remedies for Alzheimer's disease, gastrointestinal diseases, anorexia nervosa and infertlity (Shaabani et al., 2009). Although synthetic procedures for the preparation of 4,5-dihydropyrrazole nucleus bearing various functionalities on the ring have appeared so far in the literature (Liu et al., 2009; Kumarasinghe et al., 2009; Bahreni et al., 2009; Lynch & McClenaghan, 2005), we report for first time the synthesis of 3,4-dimethyl-4,5-dihydro-1H-pyrazol-5-ol nucleus through a silica gel catalyzed one-pot two components cyclocondensation.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (N1/N3/C8-C10) are, of course, planar, and they are oriented at a dihedral angle of A/B = 49.64 (6)°. Intramolecular O-H···O, N-H···O, C-H···N and C-H···O interactions (Table 1) result in the formations of non-planar six-membered rings having twisted conformations: C (N2/N3/C1/C6/C7/H6), D (O1/N1/C1/C2/C7/H1A), E (O1/O2/N2/C7/C8/H2) and F (O1/N2/C7/C8/C12/H12C).

In the crystal structure, intermolecular N-H···O and O-H···N hydrogen bonds (Table 1) link the molecules to form a polymeric network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to the diverse medical potential of pyrazoles and their modified forms, see: Gürsoy et al. (2000); Lynch & McClenaghan (2005). For the biological activity of pyrazolopyrimidines, see: Shaabani et al. (2009). For synthetic procedures for the preparation of the 4,5-dihydropyrrazole nucleus bearing various functionalities on the ring, see: Bahreni et al. (2009); Kumarasinghe et al. (2009); Liu et al. (2009); Lynch & McClenaghan (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-aminobenzohydrazide (0.15 g, 1 mmol) and a slight excess of acetylacetone (2 ml) over silica gel catalyst were stirred at room temperature for 12 h. After completion of reaction, the product was extracted with acetone. The solvent was evaporated under reduced pressure and recrystallized from ethanol (yield; 57%, m. p. 402-403 K).

Refinement top

H atoms (for NH2) were located in a difference Fourier map and their coordinates were refined. The remaining H atoms were positioned geometrically with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(2-Aminophenyl)[(5S)-5-hydroxy-3,5-dimethyl-4,5-dihydro-1H-pyrazol-1-yl]methanone top
Crystal data top
C12H15N3O2F(000) = 992
Mr = 233.27Dx = 1.261 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3163 reflections
a = 23.5705 (7) Åθ = 3.0–28.7°
b = 11.3547 (4) ŵ = 0.09 mm1
c = 9.1848 (3) ÅT = 296 K
V = 2458.18 (14) Å3Prism, yellow
Z = 80.28 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 3.0°
ω scansh = 3130
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.975, Tmax = 0.984l = 1112
14464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.624P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H15N3O2V = 2458.18 (14) Å3
Mr = 233.27Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 23.5705 (7) ŵ = 0.09 mm1
b = 11.3547 (4) ÅT = 296 K
c = 9.1848 (3) Å0.28 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2438 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.022
14464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3163 reflectionsΔρmin = 0.20 e Å3
165 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05818 (4)0.11538 (8)0.14455 (10)0.0359 (3)
O20.00495 (5)0.31866 (9)0.00220 (13)0.0505 (3)
N10.06263 (5)0.10115 (11)0.45251 (14)0.0379 (4)
N20.09915 (5)0.28723 (10)0.08904 (12)0.0351 (3)
N30.13457 (5)0.38251 (10)0.12462 (13)0.0378 (3)
C10.13799 (5)0.16794 (10)0.28915 (14)0.0299 (3)
C20.11982 (5)0.11841 (10)0.42083 (14)0.0301 (3)
C30.16031 (6)0.09259 (12)0.52774 (16)0.0398 (4)
C40.21706 (6)0.11357 (14)0.50342 (19)0.0500 (5)
C50.23509 (6)0.16073 (16)0.3730 (2)0.0536 (5)
C60.19585 (5)0.18704 (13)0.26614 (17)0.0418 (4)
C70.09593 (5)0.18893 (11)0.17072 (13)0.0294 (3)
C80.06207 (6)0.31127 (13)0.04089 (15)0.0395 (4)
C90.08216 (7)0.43582 (15)0.08055 (19)0.0521 (5)
C100.12563 (6)0.46354 (12)0.03036 (16)0.0401 (4)
C110.15629 (9)0.57783 (15)0.0355 (2)0.0616 (6)
C120.07320 (8)0.22171 (17)0.15852 (18)0.0565 (6)
H1A0.0417 (7)0.0897 (15)0.376 (2)0.0454*
H1B0.0558 (7)0.0465 (16)0.520 (2)0.0454*
H20.007810.252210.009980.0606*
H30.148730.060890.616240.047 (4)*
H40.243430.095810.575480.058 (5)*
H50.273470.174740.357090.065 (5)*
H60.208110.217860.177760.046 (4)*
H9A0.050990.491490.076060.0624*
H9B0.098340.437430.177630.0624*
H11A0.182000.577980.116590.0924*
H11B0.177220.588550.053150.0924*
H11C0.129450.640810.046520.0924*
H12A0.056940.248520.248440.0848*
H12B0.113380.211700.170430.0848*
H12C0.056380.147850.131650.0848*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0378 (5)0.0361 (5)0.0338 (5)0.0054 (4)0.0037 (4)0.0016 (4)
O20.0426 (5)0.0468 (6)0.0621 (7)0.0037 (4)0.0006 (5)0.0086 (5)
N10.0352 (6)0.0442 (7)0.0342 (6)0.0015 (5)0.0001 (4)0.0097 (5)
N20.0418 (6)0.0332 (5)0.0303 (6)0.0038 (4)0.0047 (4)0.0028 (5)
N30.0469 (6)0.0309 (5)0.0357 (6)0.0048 (4)0.0010 (5)0.0009 (5)
C10.0318 (6)0.0255 (5)0.0325 (7)0.0012 (4)0.0017 (5)0.0014 (5)
C20.0334 (6)0.0232 (5)0.0337 (7)0.0022 (4)0.0022 (5)0.0013 (5)
C30.0456 (7)0.0372 (7)0.0365 (7)0.0037 (5)0.0085 (6)0.0047 (6)
C40.0417 (8)0.0535 (9)0.0549 (10)0.0050 (6)0.0177 (7)0.0016 (7)
C50.0308 (7)0.0637 (10)0.0662 (11)0.0003 (7)0.0051 (7)0.0003 (9)
C60.0345 (6)0.0464 (8)0.0444 (8)0.0019 (5)0.0035 (6)0.0020 (6)
C70.0325 (5)0.0290 (6)0.0266 (6)0.0018 (4)0.0025 (4)0.0023 (5)
C80.0427 (7)0.0426 (7)0.0331 (7)0.0011 (5)0.0046 (5)0.0088 (6)
C90.0589 (9)0.0494 (9)0.0479 (9)0.0038 (7)0.0038 (7)0.0177 (7)
C100.0480 (7)0.0343 (7)0.0380 (7)0.0001 (5)0.0079 (6)0.0024 (6)
C110.0822 (12)0.0384 (8)0.0642 (11)0.0139 (8)0.0031 (10)0.0090 (8)
C120.0705 (10)0.0657 (11)0.0334 (8)0.0035 (9)0.0054 (7)0.0011 (8)
Geometric parameters (Å, º) top
O1—C71.2438 (15)C8—C91.535 (2)
O2—C81.3950 (18)C8—C121.507 (2)
O2—H20.8200C9—C101.479 (2)
N1—C21.3929 (17)C10—C111.486 (2)
N2—C71.3470 (17)C3—H30.9300
N2—C81.5042 (18)C4—H40.9300
N2—N31.4051 (16)C5—H50.9300
N3—C101.2808 (18)C6—H60.9300
N1—H1B0.892 (18)C9—H9A0.9700
N1—H1A0.868 (18)C9—H9B0.9700
C1—C21.4009 (18)C11—H11A0.9600
C1—C61.3970 (17)C11—H11B0.9600
C1—C71.4909 (17)C11—H11C0.9600
C2—C31.4004 (19)C12—H12A0.9600
C3—C41.377 (2)C12—H12B0.9600
C4—C51.379 (2)C12—H12C0.9600
C5—C61.381 (2)
O1···O22.9527 (14)C11···H9Bvii2.9700
O1···N12.8351 (16)H1A···O12.181 (18)
O1···C123.0548 (19)H1A···C72.541 (18)
O1···N1i2.9882 (15)H1A···O1i2.380 (17)
O1···N1ii3.0277 (16)H1A···H2i2.2700
O2···N1i2.9741 (16)H1B···H32.3700
O2···O12.9527 (14)H1B···O1v2.166 (18)
O1···H1Ai2.380 (17)H2···O12.5200
O1···H12C2.5600H2···C72.9500
O1···H1Bii2.166 (18)H2···H12C2.3200
O1···H1A2.181 (18)H2···N1i2.1700
O1···H22.5200H2···H1Ai2.2700
O2···H12Aiii2.8300H3···H1B2.3700
O2···H9Aiv2.6300H3···C1v3.0600
N1···O12.8351 (16)H4···N3viii2.9200
N1···O1i2.9882 (15)H4···C11viii3.1000
N1···O2i2.9741 (16)H4···H6viii2.5800
N1···O1v3.0277 (16)H6···N22.8100
N3···C62.9499 (18)H6···N32.6000
N1···H2i2.1700H6···C4vi3.0600
N1···H12Cv2.9300H6···H4vi2.5800
N2···H62.8100H9A···O2iv2.6300
N3···H62.6000H9B···H12A2.4400
N3···H4vi2.9200H9B···H12B2.5900
N3···H9Bvii2.8700H9B···N3ix2.8700
C6···N32.9499 (18)H9B···C10ix2.9800
C12···O13.0548 (19)H9B···C11ix2.9700
C1···H3ii3.0600H11B···C6ix3.0700
C2···H11Cvii2.9800H11C···C2ix2.9800
C4···H6viii3.0600H12A···H9B2.4400
C6···H11Bvii3.0700H12A···O2iii2.8300
C7···H22.9500H12B···H9B2.5900
C7···H12C2.9700H12C···O12.5600
C7···H1A2.541 (18)H12C···C72.9700
C10···H9Bvii2.9800H12C···H22.3200
C11···H4vi3.1000H12C···N1ii2.9300
C8—O2—H2109.00N3—C10—C11121.72 (14)
N3—N2—C7122.82 (11)C9—C10—C11123.00 (14)
N3—N2—C8112.96 (10)N3—C10—C9115.26 (13)
C7—N2—C8124.02 (11)C2—C3—H3120.00
N2—N3—C10107.35 (11)C4—C3—H3120.00
C2—N1—H1B114.7 (11)C3—C4—H4120.00
C2—N1—H1A113.7 (12)C5—C4—H4120.00
H1A—N1—H1B110.8 (16)C4—C5—H5120.00
C2—C1—C6119.43 (12)C6—C5—H5120.00
C2—C1—C7119.39 (10)C1—C6—H6120.00
C6—C1—C7120.93 (12)C5—C6—H6120.00
N1—C2—C1122.19 (11)C8—C9—H9A111.00
C1—C2—C3118.76 (11)C8—C9—H9B111.00
N1—C2—C3118.92 (12)C10—C9—H9A111.00
C2—C3—C4120.80 (14)C10—C9—H9B111.00
C3—C4—C5120.49 (14)H9A—C9—H9B109.00
C4—C5—C6119.66 (13)C10—C11—H11A109.00
C1—C6—C5120.84 (14)C10—C11—H11B109.00
N2—C7—C1120.09 (11)C10—C11—H11C109.00
O1—C7—N2119.28 (11)H11A—C11—H11B109.00
O1—C7—C1120.62 (11)H11A—C11—H11C109.00
O2—C8—C9107.62 (12)H11B—C11—H11C109.00
O2—C8—C12113.04 (13)C8—C12—H12A109.00
O2—C8—N2111.69 (11)C8—C12—H12B109.00
N2—C8—C9100.15 (11)C8—C12—H12C109.00
N2—C8—C12110.20 (12)H12A—C12—H12B109.00
C9—C8—C12113.45 (13)H12A—C12—H12C109.00
C8—C9—C10104.26 (13)H12B—C12—H12C109.00
C7—N2—N3—C10176.72 (12)C7—C1—C2—C3176.17 (11)
C8—N2—N3—C101.71 (15)C2—C1—C6—C51.8 (2)
N3—N2—C7—O1170.03 (11)C7—C1—C6—C5176.01 (14)
N3—N2—C7—C111.16 (18)C2—C1—C7—O140.35 (17)
C8—N2—C7—O14.42 (19)C2—C1—C7—N2140.86 (12)
C8—N2—C7—C1174.39 (11)C6—C1—C7—O1133.87 (13)
N3—N2—C8—O2112.23 (12)C6—C1—C7—N244.92 (17)
N3—N2—C8—C91.48 (14)N1—C2—C3—C4176.93 (13)
N3—N2—C8—C12121.25 (13)C1—C2—C3—C41.1 (2)
C7—N2—C8—O262.70 (16)C2—C3—C4—C50.1 (2)
C7—N2—C8—C9176.42 (12)C3—C4—C5—C60.0 (2)
C7—N2—C8—C1263.81 (17)C4—C5—C6—C10.9 (2)
N2—N3—C10—C91.18 (17)O2—C8—C9—C10116.07 (13)
N2—N3—C10—C11179.96 (13)N2—C8—C9—C100.73 (14)
C6—C1—C2—N1177.60 (12)C12—C8—C9—C10118.11 (14)
C6—C1—C2—C31.86 (18)C8—C9—C10—N30.24 (18)
C7—C1—C2—N18.09 (18)C8—C9—C10—C11179.00 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y, z1/2; (iv) x, y+1, z; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x, y+1, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.868 (18)2.181 (18)2.8351 (16)131.9 (15)
N1—H1A···O1i0.868 (18)2.380 (17)2.9882 (15)127.4 (15)
N1—H1B···O1v0.892 (18)2.166 (18)3.0277 (16)162.4 (16)
O2—H2···O10.822.522.9527 (14)114
O2—H2···N1i0.822.172.9741 (16)165
C6—H6···N30.932.602.9499 (18)103
C12—H12C···O10.962.563.0548 (19)112
Symmetry codes: (i) x, y, z+1/2; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H15N3O2
Mr233.27
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)23.5705 (7), 11.3547 (4), 9.1848 (3)
V3)2458.18 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14464, 3163, 2438
Rint0.022
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.04
No. of reflections3163
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.868 (18)2.181 (18)2.8351 (16)131.9 (15)
N1—H1A···O1i0.868 (18)2.380 (17)2.9882 (15)127.4 (15)
N1—H1B···O1ii0.892 (18)2.166 (18)3.0277 (16)162.4 (16)
O2—H2···O10.822.522.9527 (14)114
O2—H2···N1i0.822.172.9741 (16)165
C6—H6···N30.932.602.9499 (18)103
C12—H12C···O10.962.563.0548 (19)112
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBahreni, Z., Rahmani, H. & Ng, S. W. (2009). Acta Cryst. E65, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGürsoy, A., Demiryak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science PubMed Google Scholar
First citationKumarasinghe, I. R., Hruby, V. J. & Nichol, G. S. (2009). Acta Cryst. E65, o1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Liu, K. K.-C., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1089.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2349–o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaabani, A., Seyyedhamzeh, M., Maleki, A., Behnam, M. & Rezazadeh, F. (2009). Tetrahedron Lett. 50, 2911–2913.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1834-o1835
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds