organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1951-o1952

Methyl N-[(4-chloro­phen­yl)(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)meth­yl]glycinate

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: zxin_tj@126.com

(Received 10 July 2009; accepted 15 July 2009; online 22 July 2009)

The title compound, C20H18ClN3O3, is in an enamine–keto form, stabilized by two strong intra­molecular N—H⋯O hydrogen bonds. The pyrazole ring is oriented at dihedral angles of 4.13 (3) and 85.60 (3)° with respect to the aromatic rings. The dihedral angle between the aromatic rings is 81.79 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into double chains, which are further linked by weak C—H⋯π inter­actions, forming a two-dimensional network.

Related literature

For general background to Schiff base compounds in coord­ination chemistry, catalysis and enzymatic reactions, magnetism and mol­ecular architectures, see: Habibi et al. (2007[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.]). For the anti-bacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997[Li, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98-100.], 2004[Li, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150-153.]). For the anti-bacterial and biological activity of amino acid esters, see: Xiong et al. (1993[Xiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1-3.]). For related structures, see: Pettinari et al. (1994[Pettinari, C., Marchetti, F. & Augusto, C. (1994). Polyhedron, 13, 939-950.]); Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]); Zhang et al. (2005[Zhang, X., Zhu, H.-L., Xu, H.-Z. & Dong, M. (2005). Acta Cryst. E61, o1629-o1630.]); Zhu et al. (2005[Zhu, H. L., Zhang, X., Song, Y. J., Xu, H. Z. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3O3

  • Mr = 383.82

  • Triclinic, [P \overline 1]

  • a = 9.309 (4) Å

  • b = 10.222 (4) Å

  • c = 10.685 (5) Å

  • α = 86.275 (8)°

  • β = 82.772 (8)°

  • γ = 71.749 (5)°

  • V = 957.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.960

  • 4927 measured reflections

  • 3364 independent reflections

  • 1975 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.229

  • S = 1.05

  • 3364 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 2.06 2.755 (4) 138
N3—H3⋯O2 0.86 2.29 2.679 (4) 108
C16—H16⋯O1i 0.93 2.42 3.287 (5) 155
C17—H17⋯O1ii 0.93 2.54 3.359 (4) 147
C20—H20BCg3iii 0.96 2.69 3.604 (4) 160
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+2; (iii) -x, -y, -z+2. Cg3 is the centroid of the C12–C17 ring.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures [Habibi et al., 2007]. In recent years, the Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation [Li et al., 1997, 2004]. Amino acid esters also possess good antibacterial and biological activations [Xiong et al., 1993]. Structures of Schiff bases derived from 4-acyl-5-pyrazolones and amino acid esters and closely related to the title compound have been reported [Zhu et al., 2005; Zhang et al., 2005]. We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/N2/C7/C9/C10) and C (C12-C17) are, of course, planar, and they are oriented at a dihedral angles of A/B = 4.13 (3), A/C = 81.79 (3) and B/C = 85.60 (3) °. Intramolecular N-H···O hydrogen bonds (Table 1) stabilize the enamine-keto form as in 4-{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene]-(phenyl)methyl]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, (II) (Wang et al., 2003), and result in the formations of planar five- and six-membered rings: D (O2/N3/C18/C19/H3) and E (O1/N3/C9-C11/H3), in which the dihedral angle between them is D/E = 3.83 (4)°. Ring D is oriented with respect to the adjacent ring B at a dihedral angle of 3.12 (4)°. The dihedral angle between ring B and planar (O1/N3/C9-C11) moiety is 0.94 (3)°, which is reported as 3.56 (3)° in (II).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into double chains (Fig. 2), in which they are further linked by weak C—H···π interactions (Table 1) to form a two-dimensional network (Fig. 3), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to Schiff base compounds in coordination chemistry, catalysis and enzymatic reactions, magnetism and molecular architectures, see: Habibi et al. (2007). For the antibacteri al properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Pettinari et al. (1994); Wang et al. (2003); Zhang et al. (2005); Zhu et al. (2005). For bond-length data, see: Allen et al. (1987). Cg3 is the centroid of the C12–C17 ring.

Experimental top

The title compound was synthesized by refluxing a mixture of 1-phenyl-3-methyl-4-(p-chlor-benzyl)-5-pyrazolone (15 mmol) (Pettinari et al., 1994) and glycine methyl ester (15 mmol) in ethanol (100 ml) over a steam bath for about 5 h. The product was recrystallized from ethanol, affording pale yellow crystals suitable for X-ray analysis. Analysis calculated for C20H18ClN3O3:C 62.58, H 4.73, N 10.95%; found: C 62.55, H 4.70, N 10.91%.

Refinement top

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The one-dimensional plane formed by the intermolecular C–H···O hydrogen bonds.
[Figure 3] Fig. 3. The two-dimensional network produced by the intermolecular C–H···π interactions.
Methyl N-[(4-chlorophenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro- 1H-pyrazol-4-ylidene)methyl]glycinate top
Crystal data top
C20H18ClN3O3Z = 2
Mr = 383.82F(000) = 400
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.309 (4) ÅCell parameters from 1323 reflections
b = 10.222 (4) Åθ = 2.3–25.9°
c = 10.685 (5) ŵ = 0.23 mm1
α = 86.275 (8)°T = 296 K
β = 82.772 (8)°Block, colorless
γ = 71.749 (5)°0.24 × 0.20 × 0.18 mm
V = 957.6 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3364 independent reflections
Radiation source: fine-focus sealed tube1975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.947, Tmax = 0.960k = 1112
4927 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1339P)2]
where P = (Fo2 + 2Fc2)/3
3364 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H18ClN3O3γ = 71.749 (5)°
Mr = 383.82V = 957.6 (7) Å3
Triclinic, P1Z = 2
a = 9.309 (4) ÅMo Kα radiation
b = 10.222 (4) ŵ = 0.23 mm1
c = 10.685 (5) ÅT = 296 K
α = 86.275 (8)°0.24 × 0.20 × 0.18 mm
β = 82.772 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3364 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1975 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.960Rint = 0.019
4927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.05Δρmax = 0.54 e Å3
3364 reflectionsΔρmin = 0.44 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55778 (16)0.32750 (16)0.61403 (15)0.1056 (6)
O10.2121 (3)0.5392 (3)0.8771 (2)0.0536 (7)
O20.2655 (4)0.1981 (3)1.0279 (3)0.0771 (9)
O30.1496 (3)0.0367 (3)1.0650 (3)0.0716 (9)
N10.1065 (3)0.7252 (3)0.7427 (3)0.0520 (8)
N20.0161 (4)0.7657 (3)0.6679 (3)0.0573 (9)
N30.0591 (3)0.3478 (3)0.8789 (3)0.0510 (8)
H30.13410.37060.89980.061*
C10.3191 (5)0.7807 (4)0.8132 (4)0.0666 (12)
H10.33990.70160.86470.080*
C20.4086 (5)0.8654 (5)0.8087 (5)0.0801 (14)
H20.48950.84240.85740.096*
C30.3824 (6)0.9811 (6)0.7354 (6)0.0890 (15)
H3A0.44491.03680.73270.107*
C40.2603 (7)1.0159 (5)0.6639 (5)0.0880 (15)
H40.24051.09600.61380.106*
C50.1672 (5)0.9319 (5)0.6663 (4)0.0697 (12)
H50.08550.95520.61840.084*
C60.1992 (4)0.8118 (4)0.7424 (3)0.0525 (9)
C70.0797 (4)0.6684 (4)0.6807 (3)0.0526 (10)
C80.2151 (5)0.6816 (5)0.6135 (4)0.0776 (14)
H8A0.25120.77330.57840.116*
H8B0.29420.66340.67200.116*
H8C0.18700.61650.54700.116*
C90.0021 (4)0.5568 (4)0.7624 (3)0.0458 (9)
C100.1185 (4)0.5995 (4)0.8021 (3)0.0450 (8)
C110.0299 (4)0.4347 (4)0.8029 (3)0.0432 (8)
C120.1577 (4)0.3973 (4)0.7612 (3)0.0454 (9)
C130.1405 (5)0.3365 (5)0.6462 (4)0.0683 (12)
H130.04570.31080.59860.082*
C140.2631 (6)0.3136 (5)0.6015 (4)0.0770 (14)
H140.25130.27200.52440.092*
C150.4031 (5)0.3528 (4)0.6722 (4)0.0591 (11)
C160.4215 (4)0.4092 (4)0.7886 (4)0.0604 (11)
H160.51550.43140.83730.072*
C170.2987 (4)0.4323 (4)0.8322 (3)0.0526 (10)
H170.31070.47190.91030.063*
C180.0428 (4)0.2179 (4)0.9305 (4)0.0545 (10)
H18A0.04930.15730.86250.065*
H18B0.05600.23360.97940.065*
C190.1662 (4)0.1521 (4)1.0130 (4)0.0561 (10)
C200.2628 (6)0.0381 (5)1.1457 (5)0.0911 (16)
H20A0.36150.06311.09790.137*
H20B0.24040.11991.17910.137*
H20C0.26200.01881.21400.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0921 (10)0.1261 (12)0.1282 (12)0.0573 (9)0.0643 (9)0.0046 (9)
O10.0457 (14)0.0636 (16)0.0557 (15)0.0186 (12)0.0205 (12)0.0069 (13)
O20.0713 (19)0.075 (2)0.098 (2)0.0316 (17)0.0458 (17)0.0202 (17)
O30.0718 (19)0.0580 (18)0.091 (2)0.0220 (15)0.0336 (16)0.0132 (16)
N10.0506 (18)0.058 (2)0.0516 (18)0.0206 (15)0.0159 (14)0.0053 (15)
N20.0513 (18)0.068 (2)0.0531 (19)0.0161 (17)0.0172 (15)0.0106 (16)
N30.0406 (16)0.059 (2)0.0574 (18)0.0180 (14)0.0197 (14)0.0065 (16)
C10.060 (3)0.066 (3)0.080 (3)0.025 (2)0.021 (2)0.006 (2)
C20.066 (3)0.080 (3)0.104 (4)0.032 (3)0.022 (3)0.001 (3)
C30.091 (4)0.077 (3)0.110 (4)0.044 (3)0.012 (3)0.007 (3)
C40.107 (4)0.074 (3)0.089 (4)0.040 (3)0.016 (3)0.024 (3)
C50.078 (3)0.067 (3)0.064 (3)0.022 (2)0.018 (2)0.010 (2)
C60.054 (2)0.055 (2)0.049 (2)0.0177 (19)0.0023 (17)0.0072 (18)
C70.046 (2)0.068 (3)0.045 (2)0.018 (2)0.0144 (17)0.0054 (19)
C80.067 (3)0.101 (4)0.074 (3)0.033 (3)0.038 (2)0.031 (3)
C90.0382 (19)0.061 (2)0.0395 (18)0.0157 (17)0.0096 (15)0.0030 (17)
C100.0407 (19)0.052 (2)0.0415 (19)0.0110 (16)0.0096 (15)0.0003 (17)
C110.0347 (17)0.057 (2)0.0381 (18)0.0138 (16)0.0038 (14)0.0054 (16)
C120.0424 (19)0.055 (2)0.0407 (18)0.0156 (17)0.0115 (15)0.0021 (16)
C130.058 (3)0.098 (4)0.052 (2)0.027 (2)0.0022 (19)0.022 (2)
C140.086 (3)0.101 (4)0.057 (3)0.038 (3)0.020 (2)0.020 (2)
C150.060 (3)0.064 (3)0.063 (3)0.026 (2)0.032 (2)0.008 (2)
C160.042 (2)0.071 (3)0.069 (3)0.0180 (19)0.0127 (18)0.001 (2)
C170.040 (2)0.068 (2)0.049 (2)0.0129 (18)0.0076 (16)0.0108 (19)
C180.054 (2)0.056 (2)0.060 (2)0.0224 (19)0.0170 (19)0.0012 (19)
C190.054 (2)0.053 (2)0.064 (3)0.017 (2)0.0137 (19)0.004 (2)
C200.093 (4)0.068 (3)0.111 (4)0.013 (3)0.053 (3)0.027 (3)
Geometric parameters (Å, º) top
Cl1—C151.734 (4)C7—C81.494 (5)
O1—C101.248 (4)C8—H8A0.9600
O2—C191.191 (4)C8—H8B0.9600
O3—C191.316 (5)C8—H8C0.9600
O3—C201.442 (5)C9—C111.384 (5)
N1—C101.374 (5)C9—C101.443 (5)
N1—C61.416 (5)C11—C121.484 (5)
N1—N21.416 (4)C12—C131.382 (5)
N2—C71.300 (5)C12—C171.385 (5)
N3—C111.323 (4)C13—C141.380 (6)
N3—C181.449 (5)C13—H130.9300
N3—H30.8600C14—C151.376 (6)
C1—C61.371 (5)C14—H140.9300
C1—C21.372 (6)C15—C161.373 (6)
C1—H10.9300C16—C171.377 (5)
C2—C31.349 (7)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.389 (7)C18—C191.498 (5)
C3—H3A0.9300C18—H18A0.9700
C4—C51.396 (7)C18—H18B0.9700
C4—H40.9300C20—H20A0.9600
C5—C61.399 (6)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C7—C91.449 (5)
C19—O3—C20115.9 (3)O1—C10—C9128.3 (3)
C10—N1—C6130.1 (3)N1—C10—C9105.4 (3)
C10—N1—N2111.5 (3)N3—C11—C9120.2 (3)
C6—N1—N2118.3 (3)N3—C11—C12118.5 (3)
C7—N2—N1106.7 (3)C9—C11—C12121.2 (3)
C11—N3—C18126.5 (3)C13—C12—C17119.2 (3)
C11—N3—H3116.8C13—C12—C11120.2 (3)
C18—N3—H3116.8C17—C12—C11120.5 (3)
C6—C1—C2120.5 (4)C14—C13—C12120.4 (4)
C6—C1—H1119.7C14—C13—H13119.8
C2—C1—H1119.7C12—C13—H13119.8
C3—C2—C1121.7 (5)C15—C14—C13119.4 (4)
C3—C2—H2119.2C15—C14—H14120.3
C1—C2—H2119.2C13—C14—H14120.3
C2—C3—C4118.9 (5)C16—C15—C14121.1 (4)
C2—C3—H3A120.5C16—C15—Cl1119.6 (3)
C4—C3—H3A120.5C14—C15—Cl1119.2 (3)
C3—C4—C5120.8 (5)C15—C16—C17119.1 (4)
C3—C4—H4119.6C15—C16—H16120.5
C5—C4—H4119.6C17—C16—H16120.5
C4—C5—C6118.6 (4)C16—C17—C12120.8 (3)
C4—C5—H5120.7C16—C17—H17119.6
C6—C5—H5120.7C12—C17—H17119.6
C1—C6—C5119.5 (4)N3—C18—C19109.4 (3)
C1—C6—N1122.0 (4)N3—C18—H18A109.8
C5—C6—N1118.5 (4)C19—C18—H18A109.8
N2—C7—C9111.6 (3)N3—C18—H18B109.8
N2—C7—C8119.7 (3)C19—C18—H18B109.8
C9—C7—C8128.7 (4)H18A—C18—H18B108.2
C7—C8—H8A109.5O2—C19—O3125.3 (4)
C7—C8—H8B109.5O2—C19—C18124.3 (4)
H8A—C8—H8B109.5O3—C19—C18110.3 (3)
C7—C8—H8C109.5O3—C20—H20A109.5
H8A—C8—H8C109.5O3—C20—H20B109.5
H8B—C8—H8C109.5H20A—C20—H20B109.5
C11—C9—C10123.5 (3)O3—C20—H20C109.5
C11—C9—C7131.6 (3)H20A—C20—H20C109.5
C10—C9—C7104.9 (3)H20B—C20—H20C109.5
O1—C10—N1126.3 (3)
C10—N1—N2—C70.4 (4)C7—C9—C10—N11.0 (4)
C6—N1—N2—C7177.9 (3)C18—N3—C11—C9178.9 (3)
C6—C1—C2—C30.0 (7)C18—N3—C11—C122.0 (5)
C1—C2—C3—C40.7 (8)C10—C9—C11—N32.2 (5)
C2—C3—C4—C50.8 (8)C7—C9—C11—N3180.0 (4)
C3—C4—C5—C60.0 (7)C10—C9—C11—C12178.7 (3)
C2—C1—C6—C50.8 (6)C7—C9—C11—C120.8 (6)
C2—C1—C6—N1178.6 (4)N3—C11—C12—C1396.3 (4)
C4—C5—C6—C10.8 (6)C9—C11—C12—C1382.8 (5)
C4—C5—C6—N1178.7 (4)N3—C11—C12—C1788.6 (4)
C10—N1—C6—C13.6 (6)C9—C11—C12—C1792.2 (4)
N2—N1—C6—C1179.3 (3)C17—C12—C13—C141.4 (7)
C10—N1—C6—C5175.8 (4)C11—C12—C13—C14173.8 (4)
N2—N1—C6—C51.2 (5)C12—C13—C14—C150.5 (7)
N1—N2—C7—C91.0 (4)C13—C14—C15—C162.7 (7)
N1—N2—C7—C8179.4 (3)C13—C14—C15—Cl1178.5 (4)
N2—C7—C9—C11179.4 (4)C14—C15—C16—C173.0 (6)
C8—C7—C9—C111.0 (7)Cl1—C15—C16—C17178.2 (3)
N2—C7—C9—C101.3 (4)C15—C16—C17—C121.1 (6)
C8—C7—C9—C10179.2 (4)C13—C12—C17—C161.0 (6)
C6—N1—C10—O15.2 (6)C11—C12—C17—C16174.1 (4)
N2—N1—C10—O1177.6 (3)C11—N3—C18—C19179.5 (3)
C6—N1—C10—C9176.7 (3)C20—O3—C19—O20.2 (6)
N2—N1—C10—C90.5 (4)C20—O3—C19—C18179.2 (4)
C11—C9—C10—O11.3 (6)N3—C18—C19—O23.2 (6)
C7—C9—C10—O1177.0 (3)N3—C18—C19—O3177.4 (3)
C11—C9—C10—N1179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.062.755 (4)138
N3—H3···O20.862.292.679 (4)108
C16—H16···O1i0.932.423.287 (5)155
C17—H17···O1ii0.932.543.359 (4)147
C20—H20B···Cg3iii0.962.693.604 (4)160
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H18ClN3O3
Mr383.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.309 (4), 10.222 (4), 10.685 (5)
α, β, γ (°)86.275 (8), 82.772 (8), 71.749 (5)
V3)957.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4927, 3364, 1975
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.229, 1.05
No. of reflections3364
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.44

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.062.755 (4)137.5
N3—H3···O20.862.292.679 (4)107.8
C16—H16···O1i0.932.423.287 (5)154.9
C17—H17···O1ii0.932.543.359 (4)147.3
C20—H20B···Cg3iii0.962.693.604 (4)160
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150–153.  CAS Google Scholar
First citationLi, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationPettinari, C., Marchetti, F. & Augusto, C. (1994). Polyhedron, 13, 939–950.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1–3.  Google Scholar
First citationZhang, X., Zhu, H.-L., Xu, H.-Z. & Dong, M. (2005). Acta Cryst. E61, o1629–o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H. L., Zhang, X., Song, Y. J., Xu, H. Z. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1951-o1952
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds