organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(5-Bromo-2-hy­droxy­benzyl­­idene)amino]benzo­nitrile

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jczhou@seu.edu.cn

(Received 15 July 2009; accepted 16 July 2009; online 22 July 2009)

In the mol­ecule of the title compound, C14H9BrN2O, the dihedral angle between the aromatic rings is 1.09 (4)°. Intra­molecular O—H⋯N hydrogen bonding results in the formation of a planar (r.m.s. deviation = 0.0140 Å) six-membered ring. In the crystal structure, inter­molecular C—H⋯N inter­actions link the mol­ecules into chains.

Related literature

For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For a related structure, see: Elmalı et al. (1999[Elmalı, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrN2O

  • Mr = 301.14

  • Orthorhombic, P c a 21

  • a = 25.609 (8) Å

  • b = 3.9299 (12) Å

  • c = 12.368 (4) Å

  • V = 1244.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 294 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.518

  • 9720 measured reflections

  • 2771 independent reflections

  • 1737 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.01

  • 2771 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1271 Friedel pairs

  • Flack parameter: 0.039 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.93 2.651 (4) 146
C7—H7A⋯N2i 0.93 2.44 3.326 (4) 160
Symmetry code: (i) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the corresponding values in a similar compound (Elmalı et al., 1999). Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of A/B = 1.09 (4)°. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of planar six-membered ring C (O1/N1/C1/C2/C7/H1A), it is oriented with respect to rings A and B at dihedral angles of A/C = 2.00 (4) and B/C = 1.42 (4) °. So, rings A, B and C are almost coplanar.

In the crystal structure, intermolecular C-H···N interactions link the molecules into chains (Fig. 2), , in which they may be effective in the stabilization of the structure.

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For a related structure, see: Elmalı et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of hte title compound, 2-aminobenzonitrile (0.472 g, 4 mmol) and 5-bromo-2-hydroxybenzaldehyde (0.8 g, 4 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 5 h, and then cooled to room temperature. The solution was filtered and after two weeks yellow crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms were positioned geometrically with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-2-[(5-Bromo-2-hydroxybenzylidene)amino]benzonitrile top
Crystal data top
C14H9BrN2OF(000) = 600
Mr = 301.14Dx = 1.607 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1688 reflections
a = 25.609 (8) Åθ = 3.1–27.7°
b = 3.9299 (12) ŵ = 3.29 mm1
c = 12.368 (4) ÅT = 294 K
V = 1244.7 (7) Å3Prism, yellow
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2771 independent reflections
Radiation source: fine-focus sealed tube1737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.6°, θmin = 1.6°
ϕ and ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 55
Tmin = 0.518, Tmax = 0.518l = 1614
9720 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.0106P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2771 reflectionsΔρmax = 0.23 e Å3
163 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1271 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (14)
Crystal data top
C14H9BrN2OV = 1244.7 (7) Å3
Mr = 301.14Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 25.609 (8) ŵ = 3.29 mm1
b = 3.9299 (12) ÅT = 294 K
c = 12.368 (4) Å0.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1737 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.518Rint = 0.048
9720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.23 e Å3
S = 1.01Δρmin = 0.29 e Å3
2771 reflectionsAbsolute structure: Flack (1983), 1271 Friedel pairs
163 parametersAbsolute structure parameter: 0.039 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.014802 (15)0.46800 (11)0.49637 (9)0.0816 (2)
O10.15855 (14)0.0121 (8)0.1439 (2)0.0767 (9)
H1A0.18920.01840.16050.115*
N10.23690 (11)0.1858 (9)0.2691 (3)0.0471 (7)
N20.28448 (17)0.1697 (11)0.0417 (3)0.0800 (12)
C10.14763 (14)0.2551 (10)0.3176 (3)0.0481 (9)
C20.12781 (19)0.1038 (11)0.2221 (4)0.0567 (12)
C30.0737 (2)0.0789 (11)0.2121 (4)0.0723 (13)
H3A0.05980.01220.14900.087*
C40.04062 (17)0.1828 (11)0.2912 (4)0.0679 (12)
H4A0.00470.15820.28250.081*
C50.06036 (14)0.3244 (10)0.3842 (4)0.0576 (10)
C60.11302 (15)0.3625 (11)0.3970 (3)0.0543 (10)
H6A0.12590.46190.45980.065*
C70.20246 (14)0.2971 (10)0.3346 (3)0.0488 (9)
H7A0.21350.41100.39640.059*
C80.29066 (13)0.2276 (9)0.2900 (3)0.0458 (9)
C90.32433 (17)0.1123 (10)0.2105 (3)0.0523 (10)
C100.37810 (18)0.1385 (12)0.2213 (4)0.0622 (12)
H10A0.40010.06230.16660.075*
C110.39839 (16)0.2791 (13)0.3143 (4)0.0735 (13)
H11A0.43440.29740.32270.088*
C120.36610 (17)0.3907 (12)0.3933 (4)0.0661 (12)
H12A0.38020.48640.45560.079*
C130.31227 (16)0.3646 (12)0.3830 (4)0.0613 (11)
H13A0.29070.43920.43860.074*
C140.30179 (18)0.0458 (12)0.1155 (4)0.0598 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0607 (2)0.0846 (3)0.0995 (4)0.0101 (2)0.0174 (3)0.0112 (4)
O10.086 (2)0.096 (3)0.0480 (19)0.0127 (17)0.0052 (17)0.0184 (16)
N10.0530 (19)0.054 (2)0.0344 (18)0.0040 (14)0.0005 (15)0.0044 (16)
N20.106 (3)0.081 (3)0.054 (3)0.002 (2)0.007 (2)0.024 (2)
C10.055 (2)0.044 (2)0.045 (2)0.0054 (19)0.005 (2)0.0047 (19)
C20.073 (3)0.050 (3)0.047 (3)0.009 (2)0.004 (3)0.005 (2)
C30.075 (3)0.076 (3)0.067 (3)0.015 (3)0.024 (3)0.004 (3)
C40.052 (2)0.060 (3)0.091 (4)0.010 (2)0.015 (3)0.009 (3)
C50.049 (2)0.048 (2)0.076 (3)0.0014 (18)0.001 (2)0.016 (2)
C60.056 (2)0.056 (3)0.052 (3)0.0010 (19)0.003 (2)0.006 (2)
C70.059 (2)0.049 (2)0.038 (2)0.0061 (18)0.006 (2)0.002 (2)
C80.057 (2)0.042 (2)0.038 (2)0.0070 (17)0.000 (2)0.0003 (19)
C90.066 (3)0.046 (2)0.045 (3)0.0001 (19)0.005 (2)0.004 (2)
C100.062 (3)0.061 (3)0.064 (3)0.000 (2)0.012 (3)0.003 (3)
C110.054 (2)0.077 (3)0.089 (4)0.003 (2)0.010 (3)0.000 (3)
C120.065 (3)0.069 (3)0.064 (3)0.009 (2)0.018 (2)0.008 (2)
C130.057 (2)0.076 (3)0.051 (3)0.006 (2)0.001 (2)0.009 (2)
C140.076 (3)0.059 (3)0.045 (3)0.005 (2)0.014 (2)0.007 (2)
Geometric parameters (Å, º) top
Br1—C51.898 (4)C7—C11.429 (5)
O1—C21.328 (6)C7—H7A0.9300
O1—H1A0.8200C8—C91.385 (5)
N1—C71.275 (4)C8—C131.384 (5)
N1—C81.411 (4)C9—C101.387 (6)
C2—C11.416 (6)C10—C111.377 (6)
C3—C21.393 (7)C10—H10A0.9300
C3—C41.358 (7)C11—H11A0.9300
C3—H3A0.9300C12—C111.354 (6)
C4—H4A0.9300C12—H12A0.9300
C5—C41.374 (6)C13—C121.388 (6)
C6—C11.388 (5)C13—H13A0.9300
C6—C51.366 (5)C14—N21.125 (5)
C6—H6A0.9300C14—C91.449 (7)
C2—O1—H1A109.5N1—C7—H7A118.5
C7—N1—C8121.2 (3)C1—C7—H7A118.5
C2—C1—C7121.6 (4)C9—C8—N1116.0 (3)
C6—C1—C2119.2 (4)C9—C8—C13117.9 (3)
C6—C1—C7119.2 (4)C13—C8—N1126.0 (3)
O1—C2—C1122.6 (4)C8—C9—C10121.7 (4)
O1—C2—C3120.0 (4)C8—C9—C14118.0 (4)
C3—C2—C1117.4 (4)C10—C9—C14120.4 (4)
C2—C3—H3A118.8C9—C10—H10A120.5
C4—C3—C2122.4 (5)C11—C10—C9119.0 (4)
C4—C3—H3A118.8C11—C10—H10A120.5
C3—C4—C5119.7 (4)C10—C11—H11A119.9
C3—C4—H4A120.2C12—C11—C10120.2 (4)
C5—C4—H4A120.2C12—C11—H11A119.9
C4—C5—Br1120.4 (3)C11—C12—C13121.0 (4)
C6—C5—Br1119.3 (3)C11—C12—H12A119.5
C6—C5—C4120.3 (4)C13—C12—H12A119.5
C1—C6—H6A119.5C8—C13—C12120.2 (4)
C5—C6—C1121.0 (4)C8—C13—H13A119.9
C5—C6—H6A119.5C12—C13—H13A119.9
N1—C7—C1123.1 (3)N2—C14—C9179.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.932.651 (4)146
C7—H7A···N2i0.932.443.326 (4)160
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9BrN2O
Mr301.14
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)294
a, b, c (Å)25.609 (8), 3.9299 (12), 12.368 (4)
V3)1244.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.518, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
9720, 2771, 1737
Rint0.048
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.01
No. of reflections2771
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29
Absolute structureFlack (1983), 1271 Friedel pairs
Absolute structure parameter0.039 (14)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.932.651 (4)146
C7—H7A···N2i0.932.443.326 (4)160
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElmalı, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds