organic compounds
(E)-2-[(5-Bromo-2-hydroxybenzylidene)amino]benzonitrile
aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jczhou@seu.edu.cn
In the molecule of the title compound, C14H9BrN2O, the dihedral angle between the aromatic rings is 1.09 (4)°. Intramolecular O—H⋯N hydrogen bonding results in the formation of a planar (r.m.s. deviation = 0.0140 Å) six-membered ring. In the intermolecular C—H⋯N interactions link the molecules into chains.
Related literature
For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For a related structure, see: Elmalı et al. (1999). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809027950/hk2739sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027950/hk2739Isup2.hkl
For the preparation of hte title compound, 2-aminobenzonitrile (0.472 g, 4 mmol) and 5-bromo-2-hydroxybenzaldehyde (0.8 g, 4 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 5 h, and then cooled to room temperature. The solution was filtered and after two weeks yellow crystals suitable for X-ray analysis were obtained.
H atoms were positioned geometrically with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H9BrN2O | F(000) = 600 |
Mr = 301.14 | Dx = 1.607 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 1688 reflections |
a = 25.609 (8) Å | θ = 3.1–27.7° |
b = 3.9299 (12) Å | µ = 3.29 mm−1 |
c = 12.368 (4) Å | T = 294 K |
V = 1244.7 (7) Å3 | Prism, yellow |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
Bruker SMART CCD area-detector diffractometer | 2771 independent reflections |
Radiation source: fine-focus sealed tube | 1737 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.6°, θmin = 1.6° |
ϕ and ω scans | h = −33→33 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −5→5 |
Tmin = 0.518, Tmax = 0.518 | l = −16→14 |
9720 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0283P)2 + 0.0106P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2771 reflections | Δρmax = 0.23 e Å−3 |
163 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1271 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.039 (14) |
C14H9BrN2O | V = 1244.7 (7) Å3 |
Mr = 301.14 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 25.609 (8) Å | µ = 3.29 mm−1 |
b = 3.9299 (12) Å | T = 294 K |
c = 12.368 (4) Å | 0.2 × 0.2 × 0.2 mm |
Bruker SMART CCD area-detector diffractometer | 2771 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1737 reflections with I > 2σ(I) |
Tmin = 0.518, Tmax = 0.518 | Rint = 0.048 |
9720 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.23 e Å−3 |
S = 1.01 | Δρmin = −0.29 e Å−3 |
2771 reflections | Absolute structure: Flack (1983), 1271 Friedel pairs |
163 parameters | Absolute structure parameter: 0.039 (14) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.014802 (15) | 0.46800 (11) | 0.49637 (9) | 0.0816 (2) | |
O1 | 0.15855 (14) | −0.0121 (8) | 0.1439 (2) | 0.0767 (9) | |
H1A | 0.1892 | 0.0184 | 0.1605 | 0.115* | |
N1 | 0.23690 (11) | 0.1858 (9) | 0.2691 (3) | 0.0471 (7) | |
N2 | 0.28448 (17) | −0.1697 (11) | 0.0417 (3) | 0.0800 (12) | |
C1 | 0.14763 (14) | 0.2551 (10) | 0.3176 (3) | 0.0481 (9) | |
C2 | 0.12781 (19) | 0.1038 (11) | 0.2221 (4) | 0.0567 (12) | |
C3 | 0.0737 (2) | 0.0789 (11) | 0.2121 (4) | 0.0723 (13) | |
H3A | 0.0598 | −0.0122 | 0.1490 | 0.087* | |
C4 | 0.04062 (17) | 0.1828 (11) | 0.2912 (4) | 0.0679 (12) | |
H4A | 0.0047 | 0.1582 | 0.2825 | 0.081* | |
C5 | 0.06036 (14) | 0.3244 (10) | 0.3842 (4) | 0.0576 (10) | |
C6 | 0.11302 (15) | 0.3625 (11) | 0.3970 (3) | 0.0543 (10) | |
H6A | 0.1259 | 0.4619 | 0.4598 | 0.065* | |
C7 | 0.20246 (14) | 0.2971 (10) | 0.3346 (3) | 0.0488 (9) | |
H7A | 0.2135 | 0.4110 | 0.3964 | 0.059* | |
C8 | 0.29066 (13) | 0.2276 (9) | 0.2900 (3) | 0.0458 (9) | |
C9 | 0.32433 (17) | 0.1123 (10) | 0.2105 (3) | 0.0523 (10) | |
C10 | 0.37810 (18) | 0.1385 (12) | 0.2213 (4) | 0.0622 (12) | |
H10A | 0.4001 | 0.0623 | 0.1666 | 0.075* | |
C11 | 0.39839 (16) | 0.2791 (13) | 0.3143 (4) | 0.0735 (13) | |
H11A | 0.4344 | 0.2974 | 0.3227 | 0.088* | |
C12 | 0.36610 (17) | 0.3907 (12) | 0.3933 (4) | 0.0661 (12) | |
H12A | 0.3802 | 0.4864 | 0.4556 | 0.079* | |
C13 | 0.31227 (16) | 0.3646 (12) | 0.3830 (4) | 0.0613 (11) | |
H13A | 0.2907 | 0.4392 | 0.4386 | 0.074* | |
C14 | 0.30179 (18) | −0.0458 (12) | 0.1155 (4) | 0.0598 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0607 (2) | 0.0846 (3) | 0.0995 (4) | 0.0101 (2) | 0.0174 (3) | 0.0112 (4) |
O1 | 0.086 (2) | 0.096 (3) | 0.0480 (19) | −0.0127 (17) | −0.0052 (17) | −0.0184 (16) |
N1 | 0.0530 (19) | 0.054 (2) | 0.0344 (18) | −0.0040 (14) | 0.0005 (15) | −0.0044 (16) |
N2 | 0.106 (3) | 0.081 (3) | 0.054 (3) | 0.002 (2) | 0.007 (2) | −0.024 (2) |
C1 | 0.055 (2) | 0.044 (2) | 0.045 (2) | −0.0054 (19) | −0.005 (2) | 0.0047 (19) |
C2 | 0.073 (3) | 0.050 (3) | 0.047 (3) | −0.009 (2) | −0.004 (3) | −0.005 (2) |
C3 | 0.075 (3) | 0.076 (3) | 0.067 (3) | −0.015 (3) | −0.024 (3) | 0.004 (3) |
C4 | 0.052 (2) | 0.060 (3) | 0.091 (4) | −0.010 (2) | −0.015 (3) | 0.009 (3) |
C5 | 0.049 (2) | 0.048 (2) | 0.076 (3) | 0.0014 (18) | −0.001 (2) | 0.016 (2) |
C6 | 0.056 (2) | 0.056 (3) | 0.052 (3) | −0.0010 (19) | −0.003 (2) | −0.006 (2) |
C7 | 0.059 (2) | 0.049 (2) | 0.038 (2) | −0.0061 (18) | −0.006 (2) | −0.002 (2) |
C8 | 0.057 (2) | 0.042 (2) | 0.038 (2) | −0.0070 (17) | 0.000 (2) | 0.0003 (19) |
C9 | 0.066 (3) | 0.046 (2) | 0.045 (3) | 0.0001 (19) | 0.005 (2) | 0.004 (2) |
C10 | 0.062 (3) | 0.061 (3) | 0.064 (3) | 0.000 (2) | 0.012 (3) | −0.003 (3) |
C11 | 0.054 (2) | 0.077 (3) | 0.089 (4) | −0.003 (2) | 0.010 (3) | 0.000 (3) |
C12 | 0.065 (3) | 0.069 (3) | 0.064 (3) | −0.009 (2) | −0.018 (2) | −0.008 (2) |
C13 | 0.057 (2) | 0.076 (3) | 0.051 (3) | −0.006 (2) | 0.001 (2) | −0.009 (2) |
C14 | 0.076 (3) | 0.059 (3) | 0.045 (3) | 0.005 (2) | 0.014 (2) | −0.007 (2) |
Br1—C5 | 1.898 (4) | C7—C1 | 1.429 (5) |
O1—C2 | 1.328 (6) | C7—H7A | 0.9300 |
O1—H1A | 0.8200 | C8—C9 | 1.385 (5) |
N1—C7 | 1.275 (4) | C8—C13 | 1.384 (5) |
N1—C8 | 1.411 (4) | C9—C10 | 1.387 (6) |
C2—C1 | 1.416 (6) | C10—C11 | 1.377 (6) |
C3—C2 | 1.393 (7) | C10—H10A | 0.9300 |
C3—C4 | 1.358 (7) | C11—H11A | 0.9300 |
C3—H3A | 0.9300 | C12—C11 | 1.354 (6) |
C4—H4A | 0.9300 | C12—H12A | 0.9300 |
C5—C4 | 1.374 (6) | C13—C12 | 1.388 (6) |
C6—C1 | 1.388 (5) | C13—H13A | 0.9300 |
C6—C5 | 1.366 (5) | C14—N2 | 1.125 (5) |
C6—H6A | 0.9300 | C14—C9 | 1.449 (7) |
C2—O1—H1A | 109.5 | N1—C7—H7A | 118.5 |
C7—N1—C8 | 121.2 (3) | C1—C7—H7A | 118.5 |
C2—C1—C7 | 121.6 (4) | C9—C8—N1 | 116.0 (3) |
C6—C1—C2 | 119.2 (4) | C9—C8—C13 | 117.9 (3) |
C6—C1—C7 | 119.2 (4) | C13—C8—N1 | 126.0 (3) |
O1—C2—C1 | 122.6 (4) | C8—C9—C10 | 121.7 (4) |
O1—C2—C3 | 120.0 (4) | C8—C9—C14 | 118.0 (4) |
C3—C2—C1 | 117.4 (4) | C10—C9—C14 | 120.4 (4) |
C2—C3—H3A | 118.8 | C9—C10—H10A | 120.5 |
C4—C3—C2 | 122.4 (5) | C11—C10—C9 | 119.0 (4) |
C4—C3—H3A | 118.8 | C11—C10—H10A | 120.5 |
C3—C4—C5 | 119.7 (4) | C10—C11—H11A | 119.9 |
C3—C4—H4A | 120.2 | C12—C11—C10 | 120.2 (4) |
C5—C4—H4A | 120.2 | C12—C11—H11A | 119.9 |
C4—C5—Br1 | 120.4 (3) | C11—C12—C13 | 121.0 (4) |
C6—C5—Br1 | 119.3 (3) | C11—C12—H12A | 119.5 |
C6—C5—C4 | 120.3 (4) | C13—C12—H12A | 119.5 |
C1—C6—H6A | 119.5 | C8—C13—C12 | 120.2 (4) |
C5—C6—C1 | 121.0 (4) | C8—C13—H13A | 119.9 |
C5—C6—H6A | 119.5 | C12—C13—H13A | 119.9 |
N1—C7—C1 | 123.1 (3) | N2—C14—C9 | 179.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.93 | 2.651 (4) | 146 |
C7—H7A···N2i | 0.93 | 2.44 | 3.326 (4) | 160 |
Symmetry code: (i) −x+1/2, y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H9BrN2O |
Mr | 301.14 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 294 |
a, b, c (Å) | 25.609 (8), 3.9299 (12), 12.368 (4) |
V (Å3) | 1244.7 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.29 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.518, 0.518 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9720, 2771, 1737 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.090, 1.01 |
No. of reflections | 2771 |
No. of parameters | 163 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.29 |
Absolute structure | Flack (1983), 1271 Friedel pairs |
Absolute structure parameter | 0.039 (14) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.93 | 2.651 (4) | 146 |
C7—H7A···N2i | 0.93 | 2.44 | 3.326 (4) | 160 |
Symmetry code: (i) −x+1/2, y+1, z+1/2. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Elmalı, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). We report herein the synthesis and crystal structure of the title compound.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the corresponding values in a similar compound (Elmalı et al., 1999). Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of A/B = 1.09 (4)°. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of planar six-membered ring C (O1/N1/C1/C2/C7/H1A), it is oriented with respect to rings A and B at dihedral angles of A/C = 2.00 (4) and B/C = 1.42 (4) °. So, rings A, B and C are almost coplanar.
In the crystal structure, intermolecular C-H···N interactions link the molecules into chains (Fig. 2), , in which they may be effective in the stabilization of the structure.