organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-(4-meth­oxy­phen­yl)carbamate

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bSchool of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 18 July 2009; accepted 21 July 2009; online 25 July 2009)

The asymmetric unit of the title compound, C14H13NO3, contains two crystallographically independent mol­ecules, in which the aromatic rings are oriented at dihedral angles of 75.64 (3) and 83.14 (3)°. An N—H⋯O hydrogen bond links the two mol­ecules. Weak intramolecular C—H⋯O inter­actions are observed in the two mol­ecules. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3

  • Mr = 243.25

  • Monoclinic, P 21 /n

  • a = 9.869 (2) Å

  • b = 10.870 (2) Å

  • c = 23.319 (5) Å

  • β = 100.27 (3)°

  • V = 2461.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 4733 measured reflections

  • 4459 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.184

  • S = 1.03

  • 4459 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.86 2.19 3.038 (4) 170
N2—H2B⋯O2i 0.86 2.22 3.062 (4) 166
C6—H6A⋯O5ii 0.93 2.58 3.435 (5) 153
C9—H9A⋯O2 0.93 2.52 2.967 (5) 110
C23—H23A⋯O2i 0.93 2.60 3.390 (4) 144
C27—H27A⋯O5 0.93 2.30 2.907 (5) 122
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+2, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C13) and C (C15-C20), D (C22-C27) are, of course, planar and they are oriented at dihedral angles of A/B = 75.64 (3) and C/D = 83.14 (3)°. Intramolecular N-H···O hydrogen bond (Table 1) link the two molecules (Fig. 1). There also exist two intramolecular C-H···O interactions (Table 1).

In the crystal structure, intramolecular N-H···O and intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, to a cold stirring solution of 4-methoxybenzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) was added phenyl chloroformate (1.0 ml) slowly at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. The mixture was washed with water (20 ml), dried over sodium sulfate, and concentrated to near dryness. The crude product was purified by recrystallization from petroleum ether (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenyl N-(4-methoxyphenyl)carbamate top
Crystal data top
C14H13NO3F(000) = 1024
Mr = 243.25Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.869 (2) Åθ = 10–13°
b = 10.870 (2) ŵ = 0.09 mm1
c = 23.319 (5) ÅT = 294 K
β = 100.27 (3)°Block, colorless
V = 2461.5 (9) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2109 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.973, Tmax = 0.991l = 2827
4733 measured reflections3 standard reflections every 120 min
4459 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
4459 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H13NO3V = 2461.5 (9) Å3
Mr = 243.25Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.869 (2) ŵ = 0.09 mm1
b = 10.870 (2) ÅT = 294 K
c = 23.319 (5) Å0.30 × 0.20 × 0.10 mm
β = 100.27 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2109 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.973, Tmax = 0.9913 standard reflections every 120 min
4733 measured reflections intensity decay: 1%
4459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
4459 reflectionsΔρmin = 0.34 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0212 (2)0.7911 (3)0.03978 (13)0.0894 (8)
O20.8011 (2)0.7329 (2)0.01287 (11)0.0730 (8)
O30.6882 (3)0.3624 (3)0.20767 (12)0.0811 (8)
O41.4527 (2)0.6417 (3)0.07369 (12)0.0818 (9)
O51.2693 (2)0.7162 (2)0.03922 (11)0.0731 (8)
O61.4470 (2)1.1216 (2)0.16973 (11)0.0725 (8)
N10.9696 (3)0.6635 (3)0.03360 (15)0.0730 (9)
H1A1.05670.66960.03310.088*
N21.4897 (3)0.7712 (3)0.00016 (13)0.0618 (8)
H2B1.57360.75420.00260.074*
C10.9618 (5)1.0279 (5)0.1698 (3)0.1066 (17)
H1B0.95381.08510.19860.128*
C21.0165 (5)0.9067 (6)0.1852 (2)0.1185 (18)
H2A1.04090.88240.22390.142*
C31.0310 (4)0.8289 (5)0.1404 (2)0.0975 (15)
H3A1.06680.75050.14860.117*
C40.9940 (3)0.8648 (4)0.08460 (18)0.0628 (10)
C50.9390 (4)0.9807 (4)0.07198 (19)0.0745 (11)
H5A0.91251.00610.03350.089*
C60.9246 (4)1.0556 (5)0.1160 (2)0.0919 (14)
H6A0.88511.13250.10690.110*
C70.9180 (4)0.7285 (4)0.0059 (2)0.0894 (8)
C80.8940 (4)0.5852 (3)0.07637 (18)0.0628 (10)
C90.7833 (4)0.5173 (4)0.06612 (18)0.0689 (11)
H9A0.75680.52110.02980.083*
C100.7113 (4)0.4439 (4)0.10902 (17)0.0684 (11)
H10A0.63620.39900.10160.082*
C110.7492 (4)0.4364 (4)0.16274 (18)0.0627 (10)
C120.8617 (4)0.5036 (4)0.17297 (18)0.0724 (11)
H12A0.88910.49860.20900.087*
C130.9328 (4)0.5771 (4)0.13035 (19)0.0736 (11)
H13A1.00790.62210.13780.088*
C140.5858 (5)0.2793 (4)0.1969 (2)0.0984 (15)
H14A0.55180.23360.23170.148*
H14B0.51150.32420.18520.148*
H14C0.62450.22360.16640.148*
C151.2046 (4)0.4562 (5)0.2066 (2)0.0894 (14)
H15A1.15040.41380.23700.107*
C161.2464 (5)0.5728 (5)0.2151 (2)0.0938 (14)
H16A1.22030.61000.25130.113*
C171.3267 (4)0.6362 (4)0.17070 (19)0.0764 (12)
H17A1.35530.71600.17650.092*
C181.3637 (3)0.5799 (4)0.11805 (17)0.0645 (11)
C191.3217 (4)0.4635 (4)0.1092 (2)0.0778 (12)
H19A1.34710.42610.07300.093*
C201.2418 (5)0.4019 (4)0.1541 (3)0.0903 (14)
H20A1.21300.32200.14840.108*
C211.3919 (4)0.7121 (3)0.03685 (16)0.0584 (10)
C221.4700 (3)0.8590 (3)0.04237 (15)0.0526 (9)
C231.5852 (3)0.9022 (4)0.07914 (16)0.0629 (10)
H23A1.67160.87190.07580.075*
C241.5739 (4)0.9892 (4)0.12045 (17)0.0661 (11)
H24A1.65281.01650.14510.079*
C251.4473 (3)1.0370 (3)0.12614 (15)0.0554 (9)
C261.3334 (3)0.9931 (4)0.09065 (16)0.0646 (10)
H26A1.24711.02300.09440.078*
C271.3439 (3)0.9049 (4)0.04911 (17)0.0688 (11)
H27A1.26450.87600.02530.083*
C281.3265 (4)1.1931 (4)0.16771 (19)0.0853 (13)
H28A1.33911.24930.20000.128*
H28B1.24991.14000.16990.128*
H28C1.30891.23860.13190.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (13)0.107 (2)0.118 (2)0.0070 (13)0.0267 (13)0.0378 (17)
O20.0419 (13)0.0875 (19)0.092 (2)0.0005 (13)0.0174 (12)0.0078 (15)
O30.085 (2)0.085 (2)0.0725 (19)0.0031 (17)0.0130 (15)0.0021 (17)
O40.0475 (14)0.114 (2)0.0847 (19)0.0007 (15)0.0136 (14)0.0360 (18)
O50.0390 (14)0.095 (2)0.0863 (19)0.0060 (14)0.0130 (12)0.0183 (16)
O60.0538 (15)0.0753 (18)0.0846 (19)0.0041 (14)0.0023 (13)0.0187 (16)
N10.0414 (16)0.081 (2)0.100 (2)0.0004 (17)0.0213 (17)0.009 (2)
N20.0363 (14)0.088 (2)0.0609 (18)0.0009 (16)0.0069 (13)0.0087 (18)
C10.072 (3)0.141 (4)0.104 (4)0.021 (3)0.009 (3)0.049 (4)
C20.098 (4)0.176 (5)0.076 (3)0.010 (4)0.001 (3)0.023 (3)
C30.083 (3)0.107 (4)0.101 (3)0.033 (3)0.012 (3)0.033 (3)
C40.0358 (18)0.075 (3)0.077 (3)0.0032 (19)0.0079 (18)0.004 (2)
C50.058 (2)0.097 (3)0.069 (3)0.009 (2)0.014 (2)0.018 (2)
C60.074 (3)0.083 (3)0.119 (4)0.010 (3)0.018 (3)0.008 (3)
C70.0469 (13)0.107 (2)0.118 (2)0.0070 (13)0.0267 (13)0.0378 (17)
C80.046 (2)0.059 (2)0.087 (3)0.0060 (19)0.019 (2)0.002 (2)
C90.058 (2)0.079 (3)0.073 (3)0.001 (2)0.023 (2)0.005 (2)
C100.057 (2)0.081 (3)0.072 (3)0.005 (2)0.022 (2)0.007 (2)
C110.059 (2)0.057 (2)0.073 (3)0.008 (2)0.011 (2)0.006 (2)
C120.074 (3)0.066 (3)0.084 (3)0.004 (2)0.035 (2)0.002 (2)
C130.061 (2)0.069 (3)0.100 (3)0.003 (2)0.039 (2)0.001 (3)
C140.091 (3)0.102 (4)0.103 (4)0.026 (3)0.017 (3)0.001 (3)
C150.061 (3)0.111 (4)0.096 (4)0.008 (3)0.015 (3)0.037 (3)
C160.086 (3)0.122 (4)0.072 (3)0.000 (3)0.010 (3)0.000 (3)
C170.071 (3)0.081 (3)0.075 (3)0.014 (2)0.008 (2)0.002 (3)
C180.041 (2)0.088 (3)0.065 (3)0.002 (2)0.0099 (19)0.014 (2)
C190.070 (3)0.079 (3)0.086 (3)0.004 (2)0.016 (2)0.009 (3)
C200.077 (3)0.081 (3)0.113 (4)0.015 (3)0.018 (3)0.010 (3)
C210.046 (2)0.066 (3)0.063 (2)0.002 (2)0.0094 (19)0.002 (2)
C220.0417 (19)0.062 (2)0.054 (2)0.0021 (18)0.0065 (16)0.007 (2)
C230.0374 (19)0.081 (3)0.069 (2)0.0005 (19)0.0063 (17)0.001 (2)
C240.043 (2)0.082 (3)0.069 (3)0.003 (2)0.0026 (17)0.003 (2)
C250.041 (2)0.064 (3)0.059 (2)0.0010 (18)0.0039 (17)0.003 (2)
C260.042 (2)0.082 (3)0.070 (3)0.007 (2)0.0102 (18)0.007 (2)
C270.0359 (19)0.087 (3)0.081 (3)0.0007 (19)0.0022 (18)0.012 (2)
C280.066 (3)0.087 (3)0.103 (3)0.012 (2)0.015 (2)0.021 (3)
Geometric parameters (Å, º) top
O1—C71.355 (5)C10—H10A0.9300
O1—C41.381 (4)C11—C121.385 (5)
O2—C71.195 (4)C12—C131.367 (5)
O3—C111.372 (4)C12—H12A0.9300
O3—C141.411 (4)C13—H13A0.9300
O4—C211.366 (4)C14—H14A0.9600
O4—C181.403 (4)C14—H14B0.9600
O5—C211.203 (4)C14—H14C0.9600
O6—C251.371 (4)C15—C201.349 (6)
O6—C281.414 (4)C15—C161.358 (6)
N1—C71.332 (5)C15—H15A0.9300
N1—C81.418 (5)C16—C171.371 (6)
N1—H1A0.8600C16—H16A0.9300
N2—C211.335 (4)C17—C181.362 (5)
N2—C221.414 (4)C17—H17A0.9300
N2—H2B0.8600C18—C191.359 (5)
C1—C61.279 (6)C19—C201.369 (6)
C1—C21.445 (4)C19—H19A0.9300
C1—H1B0.9300C20—H20A0.9300
C2—C31.371 (7)C22—C271.376 (5)
C2—H2A0.9300C22—C231.378 (5)
C3—C41.344 (5)C23—C241.368 (5)
C3—H3A0.9300C23—H23A0.9300
C4—C51.383 (5)C24—C251.382 (5)
C5—C61.337 (6)C24—H24A0.9300
C5—H5A0.9300C25—C261.357 (5)
C6—H6A0.9300C26—C271.380 (5)
C8—C91.374 (5)C26—H26A0.9300
C8—C131.382 (5)C27—H27A0.9300
C9—C101.374 (5)C28—H28A0.9600
C9—H9A0.9300C28—H28B0.9600
C10—C111.372 (5)C28—H28C0.9600
C7—O1—C4120.3 (3)O3—C14—H14B109.5
C11—O3—C14118.0 (3)H14A—C14—H14B109.5
C21—O4—C18116.4 (3)O3—C14—H14C109.5
C25—O6—C28117.2 (3)H14A—C14—H14C109.5
C7—N1—C8125.9 (3)H14B—C14—H14C109.5
C7—N1—H1A117.0C20—C15—C16120.0 (5)
C8—N1—H1A117.0C20—C15—H15A120.0
C21—N2—C22126.9 (3)C16—C15—H15A120.0
C21—N2—H2B116.6C15—C16—C17120.6 (5)
C22—N2—H2B116.6C15—C16—H16A119.7
C6—C1—C2119.2 (5)C17—C16—H16A119.7
C6—C1—H1B120.4C18—C17—C16118.7 (4)
C2—C1—H1B120.4C18—C17—H17A120.6
C3—C2—C1117.2 (5)C16—C17—H17A120.6
C3—C2—H2A121.4C19—C18—C17121.0 (4)
C1—C2—H2A121.4C19—C18—O4120.1 (4)
C4—C3—C2120.8 (5)C17—C18—O4118.8 (4)
C4—C3—H3A119.6C18—C19—C20119.3 (4)
C2—C3—H3A119.6C18—C19—H19A120.3
C3—C4—O1120.5 (4)C20—C19—H19A120.3
C3—C4—C5119.9 (4)C15—C20—C19120.4 (5)
O1—C4—C5119.3 (4)C15—C20—H20A119.8
C6—C5—C4118.9 (4)C19—C20—H20A119.8
C6—C5—H5A120.5O5—C21—N2128.2 (4)
C4—C5—H5A120.5O5—C21—O4122.9 (3)
C1—C6—C5123.9 (5)N2—C21—O4108.9 (3)
C1—C6—H6A118.1C27—C22—C23117.9 (4)
C5—C6—H6A118.1C27—C22—N2124.4 (3)
O2—C7—N1127.8 (4)C23—C22—N2117.7 (3)
O2—C7—O1123.0 (4)C24—C23—C22120.8 (3)
N1—C7—O1109.2 (3)C24—C23—H23A119.6
C9—C8—C13118.8 (4)C22—C23—H23A119.6
C9—C8—N1122.3 (4)C23—C24—C25121.1 (3)
C13—C8—N1118.8 (3)C23—C24—H24A119.5
C8—C9—C10120.6 (4)C25—C24—H24A119.5
C8—C9—H9A119.7C26—C25—O6125.2 (3)
C10—C9—H9A119.7C26—C25—C24118.3 (4)
C11—C10—C9120.6 (4)O6—C25—C24116.4 (3)
C11—C10—H10A119.7C25—C26—C27121.0 (3)
C9—C10—H10A119.7C25—C26—H26A119.5
O3—C11—C10125.3 (4)C27—C26—H26A119.5
O3—C11—C12115.7 (4)C22—C27—C26120.9 (3)
C10—C11—C12118.9 (4)C22—C27—H27A119.5
C13—C12—C11120.4 (4)C26—C27—H27A119.5
C13—C12—H12A119.8O6—C28—H28A109.5
C11—C12—H12A119.8O6—C28—H28B109.5
C12—C13—C8120.6 (4)H28A—C28—H28B109.5
C12—C13—H13A119.7O6—C28—H28C109.5
C8—C13—H13A119.7H28A—C28—H28C109.5
O3—C14—H14A109.5H28B—C28—H28C109.5
C6—C1—C2—C32.7 (8)C20—C15—C16—C170.2 (7)
C1—C2—C3—C40.7 (7)C15—C16—C17—C180.0 (6)
C2—C3—C4—O1173.6 (4)C16—C17—C18—C190.3 (6)
C2—C3—C4—C50.9 (7)C16—C17—C18—O4176.2 (3)
C7—O1—C4—C3106.2 (5)C21—O4—C18—C1991.7 (4)
C7—O1—C4—C579.3 (5)C21—O4—C18—C1791.7 (4)
C3—C4—C5—C60.5 (6)C17—C18—C19—C200.4 (6)
O1—C4—C5—C6174.0 (3)O4—C18—C19—C20176.0 (3)
C2—C1—C6—C53.3 (7)C16—C15—C20—C190.1 (7)
C4—C5—C6—C11.7 (7)C18—C19—C20—C150.2 (6)
C8—N1—C7—O20.3 (8)C22—N2—C21—O54.3 (6)
C8—N1—C7—O1179.2 (3)C22—N2—C21—O4175.8 (3)
C4—O1—C7—O20.4 (7)C18—O4—C21—O54.5 (6)
C4—O1—C7—N1179.4 (4)C18—O4—C21—N2175.5 (3)
C7—N1—C8—C934.6 (6)C21—N2—C22—C275.7 (6)
C7—N1—C8—C13145.2 (4)C21—N2—C22—C23174.9 (3)
C13—C8—C9—C100.8 (6)C27—C22—C23—C240.8 (5)
N1—C8—C9—C10179.0 (3)N2—C22—C23—C24178.6 (3)
C8—C9—C10—C110.5 (6)C22—C23—C24—C250.7 (6)
C14—O3—C11—C105.6 (5)C28—O6—C25—C2618.3 (5)
C14—O3—C11—C12171.3 (3)C28—O6—C25—C24165.1 (3)
C9—C10—C11—O3177.2 (3)C23—C24—C25—C261.7 (6)
C9—C10—C11—C120.3 (6)C23—C24—C25—O6178.6 (3)
O3—C11—C12—C13177.8 (3)O6—C25—C26—C27177.9 (3)
C10—C11—C12—C130.7 (6)C24—C25—C26—C271.3 (6)
C11—C12—C13—C80.3 (6)C23—C22—C27—C261.2 (5)
C9—C8—C13—C120.4 (6)N2—C22—C27—C26178.1 (3)
N1—C8—C13—C12179.3 (3)C25—C26—C27—C220.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.193.038 (4)170
N2—H2B···O2i0.862.223.062 (4)166
C6—H6A···O5ii0.932.583.435 (5)153
C9—H9A···O20.932.522.967 (5)110
C23—H23A···O2i0.932.603.390 (4)144
C27—H27A···O50.932.302.907 (5)122
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H13NO3
Mr243.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.869 (2), 10.870 (2), 23.319 (5)
β (°) 100.27 (3)
V3)2461.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4733, 4459, 2109
Rint0.045
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.184, 1.03
No. of reflections4459
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.193.038 (4)170
N2—H2B···O2i0.862.223.062 (4)166
C6—H6A···O5ii0.932.583.435 (5)153
C9—H9A···O20.932.522.967 (5)110
C23—H23A···O2i0.932.603.390 (4)144
C27—H27A···O50.932.302.907 (5)122
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University for the support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds