metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1002-m1003

Bis(2,2′-di­amino-4,4′-bi-1,3-thia­zole-κ2N3,N3′)bis­­(nitrato-κO)lead(II) dihydrate

aDepartment of Chemistry, Shanghai University, 200444 People's Republic of China, and bDepartment of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 23 July 2009; accepted 24 July 2009; online 29 July 2009)

In the title compound, [Pb(NO3)2(C6H6N4S2)2]·2H2O, the PbII cation is N,N′-chelated by two 2,2′-diamino-4,4′-bi-1,3-thia­zole (DABT) ligands and further is cis coordinated by two nitrate anions in a distorted PbN4O2 octa­hedral geometry. One of the uncoordinated water mol­ecules is close to an inversion center and is disordered equally over two sites. Intra­molecular N—H⋯N and N—H⋯O inter­actions are present. An extensive hydrogen-bonding network of types N—H⋯O, O—H⋯O, O—H⋯N and O—H⋯S consolidates the crystal structure.

Related literature

For the application of 2,2′-diamino-4,4′-bi-1,3-thia­zole complexes as soft magnetic materials, see: Sun et al. (1997[Sun, W.-L., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.]). For general background to the structures of complexes of 2,2′-diamino-4,4′-bi-1,3-thia­zole, see: Liu et al. (2003[Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71-76.]). For Pb—N bond distances in 2,2′-diamino-4,4′-bi-1,3-thia­zole complexes, see: Abedini et al. (2005[Abedini, J., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1719-1726.]); Liu et al. (2006[Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122-m2124.]). H atoms bonded to the disordered O atoms were placed in calculated positions, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.])

[Scheme 1]

Experimental

Crystal data
  • [Pb(NO3)2(C6H6N4S2)2]·2H2O

  • Mr = 1527.66

  • Triclinic, [P \overline 1]

  • a = 9.2387 (8) Å

  • b = 9.6962 (9) Å

  • c = 13.5636 (6) Å

  • α = 105.731 (4)°

  • β = 90.377 (3)°

  • γ = 97.072 (5)°

  • V = 1159.61 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.70 mm−1

  • T = 294 K

  • 0.21 × 0.16 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.215, Tmax = 0.340

  • 6095 measured reflections

  • 4012 independent reflections

  • 3705 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.08

  • 4012 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Pb—N1 2.656 (4)
Pb—N3 2.563 (4)
Pb—N5 2.535 (5)
Pb—N7 2.692 (4)
Pb—O1 2.704 (4)
Pb—O4 2.803 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.92 2.08 2.884 (8) 145
N2—H2B⋯O4i 0.90 2.33 3.209 (7) 165
N2—H2B⋯O6i 0.90 2.31 3.057 (7) 140
N4—H4A⋯N7 0.99 2.19 3.168 (7) 166
N4—H4B⋯O1Wii 0.88 2.29 3.015 (8) 141
N4—H4B⋯O2WAiii 0.88 2.26 2.98 (9) 140
N6—H6A⋯N1 0.93 2.22 3.119 (8) 160
N6—H6B⋯O2WAiv 0.96 2.29 3.12 (10) 145
N6—H6B⋯O1Wiv 0.96 2.10 2.929 (10) 144
N8—H8A⋯O3v 0.90 2.17 3.027 (7) 159
N8—H8B⋯O4 0.84 2.13 2.916 (7) 156
O1W—H1A⋯O3 0.85 1.94 2.782 (8) 168
O1W—H1B⋯O2WA 0.83 1.97 2.54 (9) 125
O1W—H1B⋯O2WB 0.83 2.14 2.93 (4) 160
O2WA—H2C⋯N4iii 0.85 2.42 2.98 (9) 124
O2WA—H2D⋯O1Wvi 0.85 2.17 2.85 (9) 136
O2WB—H2E⋯S4iii 0.85 2.27 3.09 (5) 164
O2WB—H2F⋯S3vii 0.85 2.80 3.53 (5) 144
O2WB—H2F⋯N6vii 0.85 1.91 2.67 (5) 148
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z; (v) x-1, y, z; (vi) -x+2, -y+2, -z; (vii) -x+2, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Some metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of the ongoing structural investigation of metal complexes with DABT ligand (Liu et al., 2003), the title PbII complex has recently been prepared and its crystal structure is reported herein.

In the title compound, the PbII cation is N,N'-chelated by two DABT ligands and further is cis-coordinated by two nitrate anions in a distorted PbN4O2 octahedral geometry (Fig. 1). The Pb—N bond distances (Table 1) are somewhat longer than those [2.527, 2.544 and 2.551 Å] found in other two Pb complexes with DABT ligand (Abedini et al. 2005; Liu et al. 2006). One of the lattice water molecules is close to an inversion center and is disordered equally over two sites. The extensive hydrogen bonding network of types N—H···O, O—H···O, O—H···N and O—H···S is present in the crystal structure.

Related literature top

For the application of 2,2'-diamino-4,4'-bi-1,3-thiazole complexes as soft magnetic materials, see: Sun et al. (1997). For general background to the structures of complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole, see: Liu et al. (2003). For Pb—N bond distances in 2,2'-diamino-4,4'-bi-1,3-thiazole complexes, see: Abedini et al. (2005); Liu et al. (2006).

Experimental top

An aqueous solution (15 ml) of DABT (0.20 g, 1 mmol) and Pb(NO3)2 (0.33 g, 1 mmol) was refluxed for 4 h. The solution was filtered after cooling to room temperature. Yellow single crystals were obtained from the filtrate after 4 d.

Refinement top

One of the lattice water molecules [O2W] is close to an inversion center and is disordered equally over two sites. H atoms bonded to the disordered O atoms are placed in calculated position (Nardelli, 1999). H atoms bonded to the O1W and N atoms were located in a difference Fourier map. All H atoms bonded to O and N atoms were refined as riding in as-found relative positions. Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode. Uiso(H) = 1.2Ueq(carrier) for all H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002), and Nardelli (1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate the hydrogen bonding.
Bis(2,2'-diamino-4,4'-bi-1,3-thiazole- κ2N3,N3')bis(nitrato-κO)lead(II) dihydrate top
Crystal data top
[Pb(NO3)2(C6H6N4S2)2]·2H2OZ = 1
Mr = 1527.66F(000) = 736
Triclinic, P1Dx = 2.187 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2387 (8) ÅCell parameters from 4246 reflections
b = 9.6962 (9) Åθ = 2.2–25.0°
c = 13.5636 (6) ŵ = 7.70 mm1
α = 105.731 (4)°T = 294 K
β = 90.377 (3)°Block, yellow
γ = 97.072 (5)°0.21 × 0.16 × 0.14 mm
V = 1159.61 (16) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4012 independent reflections
Radiation source: fine-focus sealed tube3705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 911
Tmin = 0.215, Tmax = 0.340l = 1615
6095 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.6634P]
where P = (Fo2 + 2Fc2)/3
4012 reflections(Δ/σ)max = 0.004
319 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Pb(NO3)2(C6H6N4S2)2]·2H2Oγ = 97.072 (5)°
Mr = 1527.66V = 1159.61 (16) Å3
Triclinic, P1Z = 1
a = 9.2387 (8) ÅMo Kα radiation
b = 9.6962 (9) ŵ = 7.70 mm1
c = 13.5636 (6) ÅT = 294 K
α = 105.731 (4)°0.21 × 0.16 × 0.14 mm
β = 90.377 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4012 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3705 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.340Rint = 0.015
6095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 0.83 e Å3
4012 reflectionsΔρmin = 0.46 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb0.51296 (2)0.384529 (19)0.321343 (15)0.03622 (8)
S10.86425 (18)0.07481 (19)0.43924 (14)0.0634 (4)
S20.20076 (16)0.09836 (15)0.28488 (12)0.0527 (4)
S30.6251 (3)0.1416 (2)0.04539 (14)0.0887 (6)
S40.1267 (3)0.5374 (2)0.10337 (14)0.0845 (6)
N10.6815 (5)0.2053 (5)0.3667 (3)0.0462 (11)
N20.9129 (5)0.3416 (6)0.4149 (5)0.0660 (15)
H2A0.90590.41680.38620.079*
H2B1.01040.34410.42330.079*
N30.3856 (4)0.1266 (4)0.2963 (3)0.0395 (9)
N40.1501 (5)0.1384 (5)0.2314 (4)0.0614 (14)
H4A0.18520.23690.22540.074*
H4B0.09710.07530.18160.074*
N50.5432 (6)0.2735 (5)0.1318 (3)0.0537 (12)
N60.7467 (8)0.1533 (8)0.1351 (5)0.101 (2)
H6A0.72410.14440.20030.121*
H6B0.80600.07730.11330.121*
N70.3075 (5)0.4293 (5)0.1959 (3)0.0450 (10)
N80.1492 (5)0.5684 (5)0.3050 (4)0.0566 (12)
H8A0.06130.59790.30090.068*
H8B0.17610.54430.35640.068*
N90.2813 (5)0.3333 (5)0.4915 (3)0.0417 (10)
N100.7714 (5)0.5968 (5)0.2504 (4)0.0499 (11)
O10.7860 (4)0.4915 (5)0.2859 (4)0.0662 (12)
O20.6464 (4)0.6191 (5)0.2306 (3)0.0637 (11)
O30.8811 (5)0.6758 (5)0.2381 (4)0.0757 (13)
O40.2622 (5)0.4100 (5)0.4368 (4)0.0767 (14)
O50.4074 (4)0.3241 (4)0.5214 (3)0.0583 (10)
O60.1759 (5)0.2579 (6)0.5126 (4)0.0799 (14)
C10.8164 (6)0.2223 (6)0.4046 (4)0.0465 (13)
C20.6914 (7)0.0124 (7)0.4019 (5)0.0649 (17)
H20.65860.10550.40530.078*
C30.6101 (6)0.0701 (5)0.3673 (4)0.0417 (11)
C40.4582 (6)0.0295 (5)0.3302 (4)0.0406 (11)
C50.3759 (6)0.0963 (6)0.3282 (5)0.0536 (14)
H50.40970.17190.34760.064*
C60.2493 (6)0.0720 (5)0.2691 (4)0.0433 (12)
C70.6410 (8)0.1928 (7)0.0868 (5)0.0664 (17)
C80.4800 (9)0.2367 (9)0.0394 (5)0.082 (2)
H80.42760.24420.09610.099*
C90.4521 (7)0.2994 (6)0.0586 (4)0.0565 (15)
C100.3355 (7)0.3902 (6)0.0933 (4)0.0528 (14)
C110.2503 (10)0.4381 (8)0.0331 (5)0.084 (2)
H110.25730.41980.03750.100*
C120.2007 (6)0.5091 (6)0.2119 (4)0.0479 (13)
O1W0.8919 (7)0.9099 (6)0.1556 (7)0.143 (3)
H1A0.87680.84200.18480.172*
H1B0.90250.86870.09460.172*
O2WA0.952 (12)0.968 (9)0.012 (7)0.46 (3)0.50
H2C0.87120.93810.04590.553*0.50
H2D1.01930.96270.05530.553*0.50
O2WB1.007 (6)0.784 (5)0.045 (3)0.46 (3)0.50
H2E0.98150.69500.05070.553*0.50
H2F1.09800.79610.05380.553*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.03230 (12)0.03302 (12)0.04414 (12)0.00269 (8)0.00326 (8)0.01255 (8)
S10.0507 (9)0.0742 (11)0.0805 (11)0.0126 (8)0.0077 (8)0.0450 (9)
S20.0488 (8)0.0411 (7)0.0670 (9)0.0075 (6)0.0027 (7)0.0187 (7)
S30.1077 (16)0.1029 (15)0.0530 (10)0.0293 (13)0.0292 (10)0.0096 (10)
S40.1085 (16)0.0875 (13)0.0631 (11)0.0429 (12)0.0244 (10)0.0174 (9)
N10.038 (2)0.045 (2)0.060 (3)0.010 (2)0.002 (2)0.021 (2)
N20.035 (3)0.062 (3)0.109 (5)0.001 (2)0.009 (3)0.041 (3)
N30.038 (2)0.036 (2)0.045 (2)0.0012 (18)0.0018 (18)0.0118 (18)
N40.047 (3)0.051 (3)0.091 (4)0.007 (2)0.019 (3)0.033 (3)
N50.063 (3)0.055 (3)0.047 (3)0.016 (2)0.013 (2)0.018 (2)
N60.114 (6)0.131 (6)0.068 (4)0.079 (5)0.023 (4)0.017 (4)
N70.044 (3)0.049 (3)0.047 (3)0.004 (2)0.002 (2)0.022 (2)
N80.047 (3)0.071 (3)0.061 (3)0.018 (2)0.005 (2)0.028 (3)
N90.035 (2)0.052 (3)0.038 (2)0.001 (2)0.0006 (18)0.014 (2)
N100.047 (3)0.053 (3)0.053 (3)0.005 (2)0.005 (2)0.020 (2)
O10.047 (2)0.061 (3)0.104 (4)0.005 (2)0.003 (2)0.047 (3)
O20.050 (3)0.075 (3)0.076 (3)0.013 (2)0.006 (2)0.034 (2)
O30.054 (3)0.075 (3)0.113 (4)0.003 (2)0.013 (3)0.055 (3)
O40.069 (3)0.078 (3)0.112 (4)0.033 (3)0.034 (3)0.064 (3)
O50.047 (2)0.066 (3)0.057 (2)0.0002 (19)0.0071 (19)0.012 (2)
O60.050 (3)0.100 (4)0.098 (4)0.015 (3)0.006 (2)0.052 (3)
C10.039 (3)0.055 (3)0.053 (3)0.011 (3)0.004 (2)0.024 (3)
C20.057 (4)0.057 (4)0.093 (5)0.003 (3)0.007 (3)0.042 (3)
C30.043 (3)0.042 (3)0.044 (3)0.006 (2)0.005 (2)0.017 (2)
C40.041 (3)0.037 (3)0.045 (3)0.006 (2)0.008 (2)0.013 (2)
C50.051 (3)0.041 (3)0.074 (4)0.003 (3)0.001 (3)0.026 (3)
C60.046 (3)0.038 (3)0.042 (3)0.002 (2)0.002 (2)0.008 (2)
C70.075 (5)0.069 (4)0.055 (4)0.022 (4)0.014 (3)0.012 (3)
C80.092 (6)0.101 (6)0.050 (4)0.014 (5)0.003 (4)0.013 (4)
C90.068 (4)0.055 (3)0.046 (3)0.001 (3)0.006 (3)0.016 (3)
C100.068 (4)0.045 (3)0.045 (3)0.006 (3)0.001 (3)0.011 (2)
C110.123 (7)0.090 (5)0.044 (3)0.032 (5)0.010 (4)0.021 (3)
C120.048 (3)0.042 (3)0.055 (3)0.002 (3)0.010 (3)0.020 (3)
O1W0.117 (5)0.087 (4)0.240 (9)0.022 (4)0.075 (6)0.087 (5)
O2WA0.66 (8)0.50 (7)0.31 (4)0.30 (6)0.16 (4)0.17 (4)
O2WB0.66 (8)0.50 (7)0.31 (4)0.30 (6)0.16 (4)0.17 (4)
Geometric parameters (Å, º) top
Pb—N12.656 (4)N7—C121.311 (7)
Pb—N32.563 (4)N7—C101.375 (7)
Pb—N52.535 (5)N8—C121.354 (7)
Pb—N72.692 (4)N8—H8A0.8999
Pb—O12.704 (4)N8—H8B0.8393
Pb—O42.803 (5)N9—O41.210 (6)
S1—C21.717 (7)N9—O61.227 (6)
S1—C11.726 (5)N9—O51.252 (5)
S2—C51.714 (6)N10—O31.233 (6)
S2—C61.728 (5)N10—O21.242 (6)
S3—C81.709 (8)N10—O11.262 (6)
S3—C71.726 (7)C2—C31.330 (7)
S4—C111.710 (8)C2—H20.9300
S4—C121.720 (5)C3—C41.458 (7)
N1—C11.319 (7)C4—C51.349 (7)
N1—C31.395 (6)C5—H50.9300
N2—C11.345 (7)C8—C91.344 (9)
N2—H2A0.9230C8—H80.9300
N2—H2B0.9039C9—C101.474 (8)
N3—C61.313 (6)C10—C111.338 (9)
N3—C41.390 (6)C11—H110.9300
N4—C61.355 (7)O1W—H1A0.8534
N4—H4A0.9949O1W—H1B0.8279
N4—H4B0.8762O2WA—O2WAi1.0 (2)
N5—C71.313 (8)O2WA—H2C0.8498
N5—C91.391 (8)O2WA—H2D0.8500
N6—C71.323 (9)O2WB—H2E0.8502
N6—H6A0.9337O2WB—H2F0.8500
N6—H6B0.9558
N5—Pb—N378.40 (14)O3—N10—O1119.2 (5)
N5—Pb—N190.14 (15)O2—N10—O1118.7 (5)
N3—Pb—N165.73 (13)N10—O1—Pb105.8 (3)
N5—Pb—N764.98 (15)N1—C1—N2124.6 (5)
N3—Pb—N789.39 (13)N1—C1—S1114.4 (4)
N1—Pb—N7148.47 (14)N2—C1—S1121.0 (4)
N5—Pb—O175.24 (16)C3—C2—S1111.4 (5)
N3—Pb—O1132.73 (13)C3—C2—H2124.3
N1—Pb—O175.77 (13)S1—C2—H2124.3
N7—Pb—O1113.10 (13)C2—C3—N1115.0 (5)
C2—S1—C189.0 (3)C2—C3—C4125.6 (5)
C5—S2—C689.2 (3)N1—C3—C4119.4 (4)
C8—S3—C789.4 (3)C5—C4—N3114.7 (5)
C11—S4—C1288.7 (3)C5—C4—C3125.5 (5)
C1—N1—C3110.2 (4)N3—C4—C3119.7 (4)
C1—N1—Pb133.5 (4)C4—C5—S2111.0 (4)
C3—N1—Pb115.4 (3)C4—C5—H5124.5
C1—N2—H2A127.5S2—C5—H5124.5
C1—N2—H2B123.9N3—C6—N4125.3 (5)
H2A—N2—H2B102.7N3—C6—S2114.5 (4)
C6—N3—C4110.5 (4)N4—C6—S2120.2 (4)
C6—N3—Pb130.0 (3)N5—C7—N6124.9 (6)
C4—N3—Pb118.7 (3)N5—C7—S3114.5 (5)
C6—N4—H4A115.8N6—C7—S3120.6 (5)
C6—N4—H4B109.5C9—C8—S3110.7 (6)
H4A—N4—H4B120.6C9—C8—H8124.7
C7—N5—C9110.0 (5)S3—C8—H8124.7
C7—N5—Pb129.2 (4)C8—C9—N5115.4 (6)
C9—N5—Pb120.7 (4)C8—C9—C10126.0 (6)
C7—N6—H6A114.4N5—C9—C10118.7 (5)
C7—N6—H6B131.4C11—C10—N7115.5 (6)
H6A—N6—H6B100.3C11—C10—C9125.7 (6)
C12—N7—C10109.9 (5)N7—C10—C9118.8 (5)
C12—N7—Pb132.8 (4)C10—C11—S4110.9 (5)
C10—N7—Pb115.3 (3)C10—C11—H11124.5
C12—N8—H8A112.9S4—C11—H11124.5
C12—N8—H8B120.1N7—C12—N8124.8 (5)
H8A—N8—H8B121.3N7—C12—S4115.0 (4)
O4—N9—O6119.0 (5)N8—C12—S4120.3 (4)
O4—N9—O5120.7 (5)H1A—O1W—H1B105.1
O6—N9—O5120.1 (5)H2C—O2WA—H2D107.7
O3—N10—O2122.1 (5)H2E—O2WB—H2F107.7
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.922.082.884 (8)145
N2—H2B···O4ii0.902.333.209 (7)165
N2—H2B···O6ii0.902.313.057 (7)140
N4—H4A···N70.992.193.168 (7)166
N4—H4B···O1Wiii0.882.293.015 (8)141
N4—H4B···O2WAiv0.882.262.98 (9)140
N6—H6A···N10.932.223.119 (8)160
N6—H6B···O2WAv0.962.293.12 (10)145
N6—H6B···O1Wv0.962.102.929 (10)144
N8—H8A···O3vi0.902.173.027 (7)159
N8—H8B···O40.842.132.916 (7)156
O1W—H1A···O30.851.942.782 (8)168
O1W—H1B···O2WA0.831.972.54 (9)125
O1W—H1B···O2WB0.832.142.93 (4)160
O2WA—H2C···N4iv0.852.422.98 (9)124
O2WA—H2D···O1Wi0.852.172.85 (9)136
O2WB—H2E···S4iv0.852.273.09 (5)164
O2WB—H2F···S3vii0.852.803.53 (5)144
O2WB—H2F···N6vii0.851.912.67 (5)148
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z; (v) x, y1, z; (vi) x1, y, z; (vii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb(NO3)2(C6H6N4S2)2]·2H2O
Mr1527.66
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.2387 (8), 9.6962 (9), 13.5636 (6)
α, β, γ (°)105.731 (4), 90.377 (3), 97.072 (5)
V3)1159.61 (16)
Z1
Radiation typeMo Kα
µ (mm1)7.70
Crystal size (mm)0.21 × 0.16 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.215, 0.340
No. of measured, independent and
observed [I > 2σ(I)] reflections
6095, 4012, 3705
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.08
No. of reflections4012
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.46

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), and Nardelli (1999), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Pb—N12.656 (4)Pb—N72.692 (4)
Pb—N32.563 (4)Pb—O12.704 (4)
Pb—N52.535 (5)Pb—O42.803 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.922.082.884 (8)145
N2—H2B···O4i0.902.333.209 (7)165
N2—H2B···O6i0.902.313.057 (7)140
N4—H4A···N70.992.193.168 (7)166
N4—H4B···O1Wii0.882.293.015 (8)141
N4—H4B···O2WAiii0.882.262.98 (9)140
N6—H6A···N10.932.223.119 (8)160
N6—H6B···O2WAiv0.962.293.12 (10)145
N6—H6B···O1Wiv0.962.102.929 (10)144
N8—H8A···O3v0.902.173.027 (7)159
N8—H8B···O40.842.132.916 (7)156
O1W—H1A···O30.851.942.782 (8)168
O1W—H1B···O2WA0.831.972.54 (9)125
O1W—H1B···O2WB0.832.142.93 (4)160
O2WA—H2C···N4iii0.852.422.98 (9)124
O2WA—H2D···O1Wvi0.852.172.85 (9)136
O2WB—H2E···S4iii0.852.273.09 (5)164
O2WB—H2F···S3vii0.852.803.53 (5)144
O2WB—H2F···N6vii0.851.912.67 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x1, y, z; (vi) x+2, y+2, z; (vii) x+2, y+1, z.
 

Acknowledgements

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

First citationAbedini, J., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1719–1726.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122–m2124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-L., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309–2315.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1002-m1003
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds