metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m896-m897

Poly[penta­aqua­tetra­kis(μ2-nicotinato-κ2N:O)(perchlorato-κO)lanthanum(III)disilver(I)]

aLaboratory and Facility Management Division, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 13 May 2009; accepted 5 July 2009; online 11 July 2009)

In the title complex, [Ag2La(C6H4NO2)4(ClO4)(H2O)5]n, the LaIII atom, lying on a twofold rotation axis, is eight-coordinated by four O atoms from four nicotinate (nic) ligands and four water mol­ecules in a distorted square-anti­prismatic coordination geometry. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak inter­actions with one O atom from a half-occupied ClO4 anion and a water mol­ecule lying on a twofold axis. Two Ag(nic)2 units connect two La atoms, forming a cyclic unit. These units are further extended into an infinite zigzag chain. The chains are bridged by the disordered perchlorate ions via weak Ag—O [2.678 (2) Å] inter­actions. O—H⋯O hydrogen bonds, weak Ag⋯Ag [3.3340 (15) Å] inter­actions and ππ inter­actions between the pyridyl rings [centroid–centroid distance = 3.656 (2) Å] lead to a three-dimensional network.

Related literature

For related structures see: Evans & Lin (2001[Evans, O. R. & Lin, W. B. (2001). Chem. Mater. 13, 3009-3017.]); Luo et al. (2004[Luo, J. H., Jiang, F. L., Wang, R. H., Han, L., Lin, Z. Z., Cao, R. & Hong, M. C. (2004). J. Mol. Struct. 707, 211-216.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2La(C6H4NO2)4(ClO4)(H2O)5]

  • Mr = 1032.59

  • Orthorhombic, C m c a

  • a = 35.140 (5) Å

  • b = 12.3371 (16) Å

  • c = 15.046 (2) Å

  • V = 6522.8 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.465, Tmax = 0.567

  • 15911 measured reflections

  • 2999 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.090

  • S = 1.95

  • 2999 reflections

  • 212 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 1.90 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

La1—O1 2.511 (5)
La1—O3i 2.401 (4)
La1—O1W 2.498 (5)
La1—O2W 2.494 (4)
Ag1—N1 2.175 (6)
Ag1—N2 2.161 (6)
Ag1—O6 2.681 (2)
Ag1—O3W 2.877 (6)
Ag1—Ag1ii 3.3352 (14)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2iii 0.86 1.85 2.667 (6) 159
O1W—H2W⋯O4ii 0.84 1.80 2.611 (7) 161
O2W—H3W⋯O2iv 0.84 1.92 2.738 (7) 165
O2W—H4W⋯O2v 0.84 1.89 2.693 (7) 161
O3W—H5W⋯O1Wvi 0.82 2.11 2.883 (5) 157
Symmetry codes: (ii) x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) x, -y+2, -z+1; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of nictinate complexes, it has been found that nictinate functions as a multidentate ligand with versatile binding and coordination modes (Evans & Lin, 2001; Luo et al., 2004). In this paper, we report the crystal structure of the title compound, a new LaIII complex, resulted from the hydrothermal treatment of La2O3, AgNO3, perchloric acid and nicotinic acid in water.

As depicted in Fig. 1, the LaIII atom, lying on a twofold rotation axis, is surrounded by four O atoms from four nic ligands and four water molecules in a distorted square-antiprismatic coordination geometry. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak interactions with one O atom from a half-occupied ClO4- anion and a water molecule lying on a twofold rotation axis. The two pyridyl rings of the nic ligands coordinating to the Ag atom are alomost coplanar and have a dihedral angle of 1.74 (2)°. Two Ag(nic)2 units connect two La atoms, forming a cyclic unit. These cycles are further extended into an infinite zigzag chain. The chains are bridged by disordered perchlorate ions via the weak Ag—O [2.678 (2) Å] interactions into a two-dimensional wavelike layer in the b axis direction (Fig. 2). Finally, the layers are further self-assembled into a three-dimensional supramolecular network (Fig. 3) via O—H···O hydrogen bonds involving the coordinated water molecules and carboxylate O atoms from the nic ligands (Table 1), weak Ag···Ag [3.3340 (15) Å] interactions and ππ stacking interactions between the pyridyl rings [centroid–centroid distance = 3.656 (2) Å].

Related literature top

For related structures see: Evans & Lin (2001); Luo et al. (2004).

Experimental top

A mixture of La2O3 (0.162 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), HClO4 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d, and then cooled to room temperature at a rate of 10 K h-1. The pale-purple crystals obtained were washed with water and dried in air (yield 46% based on La).

Refinement top

H atoms on C atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The perchlorate anion is disordered with an occupancy factor of 0.5. The hightest peak in final difference map is located 1.00 Å from La1 and the deepest hole is located 0.94 Å from La1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, y, 1/2 - z; (ii) x, 1 - y, 1 - z; (iii) x, 3/2 - y, -1/2 + z; (iv) 1/2 - x, 3/2 - y, 1 - z.]
[Figure 2] Fig. 2. View of the two-dimensional wavelike layer of the title compound. Dashed lines denote weak Ag···O interactions.
[Figure 3] Fig. 3. View of the three-dimensional network via hydrogen bonds, weak Ag···O, Ag···Ag, and ππ interactions (dashed lines).
Poly[pentaaquatetrakis(µ2-nicotinato-κ2N:O)(perchlorato- κO)lanthanum(III)disilver(I)] top
Crystal data top
[Ag2La(C6H4NO2)4(ClO4)(H2O)5]F(000) = 4016
Mr = 1032.59Dx = 2.103 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 3600 reflections
a = 35.140 (5) Åθ = 1.4–28°
b = 12.3371 (16) ŵ = 2.64 mm1
c = 15.046 (2) ÅT = 298 K
V = 6522.8 (15) Å3Block, colorless
Z = 80.30 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
2999 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4241
Tmin = 0.465, Tmax = 0.567k = 1411
15911 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.95 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max = 0.008
212 parametersΔρmax = 1.90 e Å3
48 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Ag2La(C6H4NO2)4(ClO4)(H2O)5]V = 6522.8 (15) Å3
Mr = 1032.59Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 35.140 (5) ŵ = 2.64 mm1
b = 12.3371 (16) ÅT = 298 K
c = 15.046 (2) Å0.30 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2251 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.567Rint = 0.067
15911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04948 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.95Δρmax = 1.90 e Å3
2999 reflectionsΔρmin = 0.97 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.25001.08273 (5)0.25000.02358 (16)
Ag10.389767 (18)0.60965 (6)0.56481 (4)0.0465 (2)
C10.3039 (2)0.9196 (6)0.3991 (4)0.0299 (18)
C20.34312 (19)0.8866 (6)0.4214 (5)0.0318 (18)
C30.3495 (2)0.7964 (6)0.4729 (4)0.0331 (19)
H30.32870.75910.49560.040*
C40.4138 (2)0.8140 (8)0.4627 (5)0.053 (3)
H40.43800.78960.47700.064*
C50.4097 (2)0.9060 (8)0.4114 (7)0.071 (3)
H50.43110.94300.39130.085*
C60.3744 (2)0.9422 (7)0.3905 (5)0.048 (2)
H60.37141.00390.35570.057*
C70.4322 (2)0.4349 (7)0.6693 (6)0.054 (3)
H70.45340.47290.64890.065*
C80.3685 (2)0.4135 (6)0.6768 (5)0.0313 (18)
H80.34440.43760.66050.038*
C90.37074 (19)0.3248 (6)0.7314 (4)0.0288 (18)
C100.4064 (2)0.2925 (7)0.7546 (6)0.060 (3)
H100.40980.23310.79190.072*
C110.4374 (2)0.3480 (8)0.7226 (7)0.078 (4)
H110.46190.32570.73750.094*
C120.3359 (2)0.2677 (6)0.7620 (5)0.0292 (17)
N10.38410 (17)0.7606 (5)0.4913 (4)0.0369 (16)
N20.39810 (17)0.4670 (5)0.6458 (4)0.0375 (16)
O10.30034 (13)0.9960 (4)0.3448 (3)0.0366 (13)
O20.27688 (13)0.8707 (4)0.4351 (3)0.0331 (13)
O30.30462 (12)0.3020 (4)0.7338 (3)0.0328 (12)
O40.33989 (13)0.1890 (5)0.8112 (3)0.0432 (15)
O1W0.28251 (13)0.9406 (4)0.1593 (3)0.0373 (14)
H1W0.26790.91150.12040.056*
H2W0.29830.89590.17950.056*
O2W0.24825 (13)1.1647 (4)0.4015 (3)0.0478 (14)
H3W0.23851.22690.40290.072*
H4W0.26201.15350.44610.072*
O3W0.32305 (14)0.50000.50000.074 (3)
H5W0.30860.52970.53560.111*
Cl10.5030 (4)0.6862 (4)0.5923 (4)0.0816 (15)0.50
O50.5071 (4)0.8007 (6)0.5862 (9)0.118 (3)0.50
O60.4640 (3)0.6544 (14)0.5835 (10)0.118 (3)0.50
O70.5133 (4)0.6545 (12)0.6849 (7)0.118 (3)0.50
O80.5275 (4)0.6292 (12)0.5351 (9)0.118 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0267 (3)0.0230 (3)0.0210 (3)0.0000.0014 (3)0.000
Ag10.0542 (4)0.0386 (4)0.0466 (4)0.0050 (4)0.0029 (3)0.0150 (3)
C10.043 (4)0.027 (5)0.020 (4)0.006 (4)0.007 (4)0.007 (3)
C20.034 (4)0.032 (5)0.028 (4)0.004 (4)0.004 (4)0.004 (4)
C30.032 (4)0.036 (5)0.030 (4)0.005 (4)0.000 (4)0.010 (4)
C40.038 (5)0.061 (8)0.060 (6)0.003 (5)0.004 (4)0.024 (5)
C50.033 (5)0.075 (9)0.105 (9)0.004 (5)0.001 (5)0.049 (7)
C60.044 (5)0.052 (7)0.047 (5)0.006 (4)0.011 (4)0.029 (4)
C70.033 (5)0.051 (7)0.078 (7)0.004 (4)0.002 (5)0.026 (5)
C80.029 (4)0.037 (5)0.028 (4)0.002 (4)0.001 (3)0.004 (4)
C90.033 (4)0.028 (5)0.025 (5)0.003 (4)0.006 (3)0.001 (4)
C100.039 (5)0.055 (6)0.087 (7)0.002 (4)0.007 (5)0.040 (6)
C110.027 (5)0.069 (8)0.139 (10)0.003 (5)0.007 (5)0.059 (7)
C120.035 (4)0.025 (5)0.027 (5)0.003 (3)0.004 (4)0.010 (4)
N10.037 (4)0.037 (5)0.037 (4)0.002 (4)0.004 (3)0.011 (3)
N20.040 (4)0.033 (4)0.040 (4)0.004 (3)0.004 (3)0.008 (3)
O10.041 (3)0.031 (4)0.038 (3)0.006 (2)0.005 (3)0.013 (3)
O20.037 (3)0.036 (4)0.027 (3)0.002 (2)0.001 (2)0.005 (2)
O30.027 (3)0.033 (3)0.038 (3)0.007 (2)0.004 (2)0.002 (2)
O40.037 (3)0.038 (4)0.054 (4)0.004 (3)0.007 (3)0.021 (3)
O1W0.039 (3)0.034 (4)0.039 (3)0.007 (2)0.010 (2)0.009 (2)
O2W0.073 (3)0.046 (4)0.025 (3)0.026 (3)0.017 (3)0.009 (2)
O3W0.050 (5)0.123 (10)0.048 (6)0.0000.0000.011 (5)
Cl10.044 (3)0.069 (3)0.132 (4)0.015 (5)0.044 (5)0.014 (3)
O50.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O60.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O70.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O80.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
Geometric parameters (Å, º) top
La1—O12.511 (5)C7—C111.352 (11)
La1—O3i2.401 (4)C7—H70.9300
La1—O1W2.498 (5)C8—N21.317 (8)
La1—O2W2.494 (4)C8—C91.371 (10)
Ag1—N12.175 (6)C8—H80.9300
Ag1—N22.161 (6)C9—C101.360 (9)
Ag1—O62.681 (2)C9—C121.484 (10)
Ag1—O3W2.877 (6)C10—C111.375 (11)
Ag1—Ag1ii3.3352 (14)C10—H100.9300
C1—O11.254 (8)C11—H110.9300
C1—O21.249 (8)C12—O41.230 (8)
C1—C21.475 (9)C12—O31.253 (8)
C2—C61.378 (10)O3—La1iii2.401 (4)
C2—C31.373 (10)O1W—H1W0.8564
C3—N11.324 (8)O1W—H2W0.8388
C3—H30.9300O2W—H3W0.8404
C4—N11.306 (9)O2W—H4W0.8395
C4—C51.379 (11)O3W—H5W0.8241
C4—H40.9300Cl1—O81.4076
C5—C61.354 (10)Cl1—O51.4226
C5—H50.9300Cl1—O61.4309
C6—H60.9300Cl1—O71.4925
C7—N21.312 (9)
O3iii—La1—O3i107.4 (2)N1—C4—H4119.5
O3iii—La1—O2Wiv82.65 (16)C5—C4—H4119.5
O3i—La1—O2Wiv69.35 (15)C4—C5—C6119.8 (8)
O3iii—La1—O2W69.35 (15)C4—C5—H5120.1
O3i—La1—O2W82.65 (16)C6—C5—H5120.1
O2Wiv—La1—O2W132.1 (2)C2—C6—C5119.2 (8)
O3iii—La1—O1W146.78 (15)C2—C6—H6120.4
O3i—La1—O1W89.71 (15)C5—C6—H6120.4
O2Wiv—La1—O1W76.96 (16)N2—C7—C11121.5 (8)
O2W—La1—O1W142.66 (15)N2—C7—H7119.2
O3iii—La1—O1Wiv89.71 (15)C11—C7—H7119.2
O3i—La1—O1Wiv146.78 (15)N2—C8—C9124.5 (7)
O2Wiv—La1—O1Wiv142.66 (15)N2—C8—H8117.8
O2W—La1—O1Wiv76.96 (16)C9—C8—H8117.8
O1W—La1—O1Wiv90.8 (2)C10—C9—C8116.2 (7)
O3iii—La1—O1iv75.34 (16)C10—C9—C12122.7 (7)
O3i—La1—O1iv139.26 (15)C8—C9—C12121.1 (6)
O2Wiv—La1—O1iv70.81 (16)C9—C10—C11119.7 (8)
O2W—La1—O1iv132.40 (16)C9—C10—H10120.2
O1W—La1—O1iv73.32 (16)C11—C10—H10120.2
O1Wiv—La1—O1iv71.89 (16)C7—C11—C10119.7 (8)
O3iii—La1—O1139.26 (15)C7—C11—H11120.1
O3i—La1—O175.34 (16)C10—C11—H11120.1
O2Wiv—La1—O1132.40 (16)O4—C12—O3124.7 (7)
O2W—La1—O170.81 (16)O4—C12—C9117.9 (7)
O1W—La1—O171.89 (16)O3—C12—C9117.4 (7)
O1Wiv—La1—O173.32 (16)C4—N1—C3119.7 (7)
O1iv—La1—O1129.6 (2)C4—N1—Ag1121.8 (5)
N2—Ag1—N1175.3 (2)C3—N1—Ag1118.5 (5)
N2—Ag1—Ag1ii70.66 (16)C7—N2—C8118.4 (7)
N1—Ag1—Ag1ii113.42 (17)C7—N2—Ag1121.4 (5)
O6—Ag1—N288.67 (6)C8—N2—Ag1120.0 (5)
O6—Ag1—N188.06 (7)C1—O1—La1139.5 (5)
O3W—Ag1—N198.95 (17)C12—O3—La1iii150.2 (5)
O3W—Ag1—N285.33 (16)La1—O1W—H1W113.1
O3W—Ag1—O6157.70 (7)La1—O1W—H2W124.4
O1—C1—O2124.7 (7)H1W—O1W—H2W111.6
O1—C1—C2116.7 (7)La1—O2W—H3W113.8
O2—C1—C2118.6 (7)La1—O2W—H4W130.5
C6—C2—C3117.6 (7)H3W—O2W—H4W111.4
C6—C2—C1122.1 (7)O8—Cl1—O5113.3
C3—C2—C1120.3 (7)O8—Cl1—O6113.1
N1—C3—C2122.5 (7)O5—Cl1—O6111.3
N1—C3—H3118.7O8—Cl1—O7106.8
C2—C3—H3118.7O5—Cl1—O7107.2
N1—C4—C5121.1 (8)O6—Cl1—O7104.5
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.861.852.667 (6)159
O1W—H2W···O4ii0.841.802.611 (7)161
O2W—H3W···O2v0.841.922.738 (7)165
O2W—H4W···O2vi0.841.892.693 (7)161
O3W—H5W···O1Wvii0.822.112.883 (5)157
Symmetry codes: (ii) x, y+1, z+1; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x, y+2, z+1; (vii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2La(C6H4NO2)4(ClO4)(H2O)5]
Mr1032.59
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)298
a, b, c (Å)35.140 (5), 12.3371 (16), 15.046 (2)
V3)6522.8 (15)
Z8
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.465, 0.567
No. of measured, independent and
observed [I > 2σ(I)] reflections
15911, 2999, 2251
Rint0.067
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.090, 1.95
No. of reflections2999
No. of parameters212
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.90, 0.97

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
La1—O12.511 (5)Ag1—N22.161 (6)
La1—O3i2.401 (4)Ag1—O62.681 (2)
La1—O1W2.498 (5)Ag1—O3W2.877 (6)
La1—O2W2.494 (4)Ag1—Ag1ii3.3352 (14)
Ag1—N12.175 (6)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.861.852.667 (6)159
O1W—H2W···O4ii0.841.802.611 (7)161
O2W—H3W···O2iv0.841.922.738 (7)165
O2W—H4W···O2v0.841.892.693 (7)161
O3W—H5W···O1Wvi0.822.112.883 (5)157
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x, y+2, z+1; (vi) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for support of this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. B. (2001). Chem. Mater. 13, 3009–3017.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, J. H., Jiang, F. L., Wang, R. H., Han, L., Lin, Z. Z., Cao, R. & Hong, M. C. (2004). J. Mol. Struct. 707, 211–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m896-m897
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds