metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m994-m995

Poly[4-(di­methyl­amino)pyridinium [(μ6-5-carb­oxy­benzene-1,2,4-tri­carb­oxy­ato-κ6O1:O1′:O2:O4:O4′:O5)diargentate(I)]]

aFaculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: zhangh@nenu.edu.cn

(Received 1 June 2009; accepted 21 July 2009; online 25 July 2009)

In the title compound, {(C7H11N2)[Ag2(C10H3O8)]}n, the polymeric anion consists of two AgI atoms and a Hbtc3− ligand (H4btc = benzene-1,2,4,5-tetra­carboxylic acid). Each AgI atom is coordinated by four O atoms from three different Hbtc3− ligands. The two AgI atoms are bridged by two bidentate carboxyl­ate groups into an Ag2O4 cyclic unit, with an Ag⋯Ag distance of 2.8189 (3) Å. In this way, the Ag atoms are connected by the Hbtc3− ligands into an extended two-dimensional layer structure. A three-dimensional network is accomplished through O—H⋯O hydrogen bonds between the anionic layers. The cationic guest Hdmap+ [dmap = 4-(dimethyl­amino)pyridine] is trapped in the network and adheres to the layer by an N—H⋯O hydrogen bond.

Related literature

For general background to metal-organic frameworks with 1,2,4,5-benzene­tetra­carboxyl­ate liganda, see: Cao et al. (2002[Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.]); Hu et al. (2004[Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112-m113.]); Li et al. (2003[Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119-3124.]). For related complexes, see: Chen (2008[Chen, J. (2008). Acta Cryst. E64, m498-m499.]); Sun et al. (2003[Sun, D. F., Cao, R., Sun, Y. Q., Bi, W. H., Li, X. J., Wang, Y. Q., Shi, Q. & Li, X. (2003). Inorg. Chem. 42, 7512-7518.]); Zheng et al. (2002[Zheng, S. L., Tong, M. L., Chen, X. M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360-364.], 2003[Zheng, S. L., Zhang, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem. 172, 45-52.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[Ag2(C10H3O8)]

  • Mr = 590.04

  • Triclinic, [P \overline 1]

  • a = 9.7192 (3) Å

  • b = 9.9936 (5) Å

  • c = 10.4968 (3) Å

  • α = 113.304 (4)°

  • β = 97.140 (3)°

  • γ = 103.260 (3)°

  • V = 884.65 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 K

  • 0.24 × 0.18 × 0.14 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.611, Tmax = 0.725

  • 7226 measured reflections

  • 3124 independent reflections

  • 2808 reflections with I > 2σI)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.06

  • 3124 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1 2.5220 (15)
Ag1—O3i 2.1784 (15)
Ag1—O3 2.7573 (19)
Ag1—O6ii 2.1765 (15)
Ag2—O4 2.2091 (15)
Ag2—O5iii 2.2224 (16)
Ag2—O5iv 2.873 (2)
Ag2—O7iv 2.4442 (15)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1; (iii) x, y+1, z+1; (iv) -x+1, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H⋯O7v 0.84 1.88 2.720 (2) 177
O2—H2⋯O8vi 0.82 1.73 2.541 (2) 173
Symmetry codes: (v) x-1, y+1, z; (vi) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

More efforts have been made to construct MOFs (metal organic frameworks) materials by using 1,2,4,5-benzenetetracarboxylic acid (H4btc) as molecular building block, owing to its complexed coordination modes to metal ions and various dimensionalities (Cao et al., 2002; Hu et al., 2004; Li et al., 2003). According to literature, the combination of H4btc, as a polydentate ligand and silver(I) can produce various architectures, involving in [Ag2(pbi)2(H2btc)]n [pbi = 2-(3-pyridyl)-1H-benzimidazole] (Chen, 2008), [Ag(µ3-hmt)]2[Ag(NH3)2]2(btc).3H2O (hmt = hexamethylenetetramine) (Zheng et al., 2002), [Ag83-hmt)24-hmt)2(µ-btc)2(µ-H2O)3].18H2O (Zheng et al., 2003), and [Ag(bipy)][H2btc]0.5.H2O (Sun et al., 2003). Herein, the title complex, [Hdmap][Ag2(Hbtc)] (dmap = 4-dimethylaminopyridine), with a layer structure is reported.

The structure of the title compound contains two crystallographically independent AgI atoms, one (Hbtc)3- ligand and one (Hdmap)+ cantion. Each AgI atom is coordinated by four carboxylate O atoms from three different Hbtc ligands (Fig. 1), with three close bond distances [average Ag1—O = 2.2923 (15) and Ag2—O = 2.2919 (15) Å] and one long bond distance [Ag1—O = 2.7573 (19) and Ag2—O = 2.873 (2) Å] (Table 1). It is worth noting that two adjacent Ag1 and Ag2 atoms are bridged by two bidentate carboxylate groups into an Ag2O4 cyclic unit, with an Ag···Ag distance of 2.8189 (3) Å. The Hbtc ligand connects six Ag atoms, leading to a two-dimensional anionic layer (Fig. 2). The interlayer O—H···O hydrogen bonds hold adjacent layers together to bring out a supramolecular network. The cationic guest (Hdmap)+ is trapped in the network and adhere to the layer by an N—H···O hydrogen bond (Table 2).

Related literature top

For general background to metal-organic frameworks with 1,2,4,5-benzenetetracarboxylate liganda, see: Cao et al. (2002); Hu et al. (2004); Li et al. (2003). For related complexes, see: Chen (2008); Sun et al. (2003); Zheng et al. (2002, 2003).

Experimental top

A mixture of pyromelitic acid anhydride (0.218 g, 0.1 mmol) in distilled water (10 ml) was stirred at 333 K for 1 h until to get clear solution and then a DMF solution (2 ml) of AgNO3 (0.169 g, 0.1 mmol) was added on stirring for 1 h under ambient condition. The resulting solution was allowed to stand in air at room temperature for 3 d. Colorless crystals were collected in 77.8% yield based on AgNO3.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl), N—H = 0.84 and O—H = 0.82 Å, and with Uiso(H) = 1.2(or 1.5 for methyl and hydroxyl)Ueq(C, N, O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 1 - z; (iii) x, 1 + y, 1 + z; (iv) 1 - x, -y, 2 - z.]
[Figure 2] Fig. 2. A view of the two-dimensional layer in the title compound. H atoms are omitted for clarity.
Poly[4-(dimethylamino)pyridinium [(µ6-5-carboxybenzene-1,2,4-tricarboxylato- κ6O1:O1':O2:O4:O4': O5)diargentate(I)]] top
Crystal data top
(C7H11N2)[Ag2(C10H3O8)]Z = 2
Mr = 590.04F(000) = 576
Triclinic, P1Dx = 2.215 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7192 (3) ÅCell parameters from 3901 reflections
b = 9.9936 (5) Åθ = 4.4–25.0°
c = 10.4968 (3) ŵ = 2.27 mm1
α = 113.304 (4)°T = 293 K
β = 97.140 (3)°Block, colorless
γ = 103.260 (3)°0.24 × 0.18 × 0.14 mm
V = 884.65 (7) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube2808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 4.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1111
Tmin = 0.611, Tmax = 0.725l = 1212
7226 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.4969P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
3124 reflectionsΔρmax = 0.35 e Å3
265 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0157 (6)
Crystal data top
(C7H11N2)[Ag2(C10H3O8)]γ = 103.260 (3)°
Mr = 590.04V = 884.65 (7) Å3
Triclinic, P1Z = 2
a = 9.7192 (3) ÅMo Kα radiation
b = 9.9936 (5) ŵ = 2.27 mm1
c = 10.4968 (3) ÅT = 293 K
α = 113.304 (4)°0.24 × 0.18 × 0.14 mm
β = 97.140 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2808 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.725Rint = 0.012
7226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3124 reflectionsΔρmin = 0.47 e Å3
265 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.421397 (19)0.410977 (18)0.802682 (17)0.02690 (8)
Ag20.421385 (19)0.385653 (19)1.290598 (17)0.02889 (9)
O10.22857 (16)0.20334 (17)0.81649 (18)0.0277 (4)
O20.10698 (15)0.04467 (17)0.71974 (19)0.0329 (4)
H20.03640.01260.72200.049*
O30.57621 (18)0.37804 (17)1.02125 (17)0.0326 (4)
O40.4252 (2)0.21751 (18)1.07819 (17)0.0344 (4)
O50.41174 (19)0.39642 (18)0.45762 (18)0.0357 (4)
O60.5636 (2)0.23946 (18)0.39821 (17)0.0341 (4)
O70.75751 (16)0.21312 (17)0.65497 (17)0.0251 (3)
O80.87465 (16)0.03113 (17)0.7214 (2)0.0336 (4)
C10.2265 (2)0.0702 (2)0.7685 (2)0.0178 (4)
C20.4977 (2)0.2487 (2)0.9985 (2)0.0173 (4)
C30.4930 (2)0.1181 (2)0.8600 (2)0.0160 (4)
C40.3628 (2)0.0996 (2)0.6355 (2)0.0177 (4)
H40.27550.16170.56840.021*
C50.3627 (2)0.0251 (2)0.7570 (2)0.0160 (4)
C60.6223 (2)0.0377 (2)0.7128 (2)0.0157 (4)
C70.4913 (2)0.1332 (2)0.6121 (2)0.0153 (4)
C80.6218 (2)0.0862 (2)0.8348 (2)0.0185 (4)
H80.70930.14930.90120.022*
C90.4888 (2)0.2673 (2)0.4775 (2)0.0168 (4)
C100.7617 (2)0.0765 (2)0.6939 (2)0.0192 (4)
N10.0720 (2)0.4030 (2)0.1392 (2)0.0333 (5)
N20.1309 (2)0.6318 (3)0.4369 (2)0.0378 (5)
H0.16830.67770.50210.045*
C110.0048 (2)0.4765 (3)0.2354 (2)0.0271 (5)
C120.0362 (3)0.7091 (3)0.3890 (3)0.0354 (6)
H120.01720.81440.42400.042*
C130.1624 (3)0.4795 (3)0.3866 (3)0.0375 (6)
H130.22960.42790.42040.045*
C140.0985 (3)0.3988 (3)0.2872 (3)0.0343 (6)
H140.12230.29310.25330.041*
C150.0325 (3)0.6369 (3)0.2906 (3)0.0333 (6)
H150.09810.69300.25920.040*
C160.0426 (3)0.2378 (3)0.0780 (3)0.0407 (6)
H16A0.05400.18830.01720.061*
H16B0.05050.20650.15350.061*
H16C0.11190.20950.02310.061*
C170.1797 (3)0.4867 (4)0.0902 (3)0.0423 (7)
H17A0.25880.55910.17000.063*
H17B0.13510.54000.04730.063*
H17C0.21600.41610.02100.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03846 (13)0.01606 (11)0.01917 (11)0.00464 (7)0.01347 (8)0.00093 (7)
Ag20.04268 (13)0.01682 (11)0.02185 (11)0.00567 (8)0.01695 (8)0.00245 (8)
O10.0209 (8)0.0163 (8)0.0436 (10)0.0084 (6)0.0142 (7)0.0076 (7)
O20.0123 (7)0.0184 (8)0.0581 (11)0.0053 (6)0.0090 (7)0.0065 (8)
O30.0409 (10)0.0154 (8)0.0288 (9)0.0006 (7)0.0191 (7)0.0016 (7)
O40.0535 (11)0.0211 (8)0.0240 (8)0.0075 (7)0.0231 (8)0.0037 (7)
O50.0431 (10)0.0148 (8)0.0356 (9)0.0001 (7)0.0255 (8)0.0019 (7)
O60.0553 (11)0.0201 (8)0.0233 (8)0.0081 (7)0.0245 (8)0.0034 (7)
O70.0233 (8)0.0173 (8)0.0361 (9)0.0103 (6)0.0155 (7)0.0084 (7)
O80.0143 (8)0.0191 (8)0.0614 (12)0.0046 (6)0.0133 (7)0.0108 (8)
C10.0168 (10)0.0168 (11)0.0191 (10)0.0056 (8)0.0084 (8)0.0058 (9)
C20.0181 (10)0.0166 (10)0.0149 (9)0.0087 (8)0.0047 (8)0.0027 (8)
C30.0185 (10)0.0132 (10)0.0154 (10)0.0056 (8)0.0061 (8)0.0045 (8)
C40.0146 (10)0.0155 (10)0.0173 (10)0.0036 (8)0.0026 (8)0.0026 (8)
C50.0151 (10)0.0132 (10)0.0199 (10)0.0049 (7)0.0079 (8)0.0061 (8)
C60.0144 (10)0.0132 (10)0.0185 (10)0.0047 (7)0.0067 (8)0.0050 (8)
C70.0173 (10)0.0130 (9)0.0160 (9)0.0063 (8)0.0073 (8)0.0049 (8)
C80.0155 (10)0.0143 (10)0.0187 (10)0.0028 (8)0.0031 (8)0.0016 (8)
C90.0168 (10)0.0164 (10)0.0150 (10)0.0071 (8)0.0035 (8)0.0036 (8)
C100.0181 (10)0.0173 (11)0.0199 (10)0.0063 (8)0.0074 (8)0.0045 (9)
N10.0372 (11)0.0354 (11)0.0322 (11)0.0154 (9)0.0194 (9)0.0141 (9)
N20.0413 (12)0.0458 (13)0.0318 (11)0.0272 (10)0.0174 (10)0.0123 (10)
C110.0270 (12)0.0322 (13)0.0235 (11)0.0108 (10)0.0076 (9)0.0122 (10)
C120.0420 (14)0.0289 (13)0.0338 (13)0.0143 (11)0.0061 (11)0.0113 (11)
C130.0364 (14)0.0422 (15)0.0414 (14)0.0136 (11)0.0216 (12)0.0213 (13)
C140.0383 (14)0.0280 (13)0.0401 (14)0.0111 (11)0.0188 (12)0.0150 (12)
C150.0369 (13)0.0308 (13)0.0344 (13)0.0097 (10)0.0128 (11)0.0156 (11)
C160.0437 (15)0.0410 (16)0.0369 (14)0.0218 (12)0.0152 (12)0.0102 (13)
C170.0371 (14)0.0576 (18)0.0399 (15)0.0176 (13)0.0225 (12)0.0236 (14)
Geometric parameters (Å, º) top
Ag1—O12.5220 (15)C6—C81.387 (3)
Ag1—O3i2.1784 (15)C6—C71.400 (3)
Ag1—O32.7573 (19)C6—C101.507 (3)
Ag1—O6ii2.1765 (15)C7—C91.507 (3)
Ag2—O42.2091 (15)C8—H80.9300
Ag2—O5iii2.2224 (16)N1—C111.336 (3)
Ag2—O5iv2.873 (2)N1—C161.455 (3)
Ag2—O7iv2.4442 (15)N1—C171.460 (3)
Ag1—Ag2i2.8189 (3)N2—C121.339 (3)
O1—C11.216 (3)N2—C131.341 (3)
O2—C11.306 (2)N2—H0.84
O2—H20.82C11—C151.417 (3)
O3—C21.252 (3)C11—C141.420 (3)
O4—C21.244 (3)C12—C151.355 (3)
O5—C91.255 (3)C12—H120.9300
O6—C91.240 (3)C13—C141.361 (3)
O7—C101.249 (3)C13—H130.9300
O8—C101.257 (2)C14—H140.9300
C1—C51.496 (3)C15—H150.9300
C2—C31.508 (3)C16—H16A0.9600
C3—C81.392 (3)C16—H16B0.9600
C3—C51.401 (3)C16—H16C0.9600
C4—C51.387 (3)C17—H17A0.9600
C4—C71.392 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
O6ii—Ag1—O3i165.22 (6)C4—C7—C6118.95 (18)
O6ii—Ag1—O188.08 (6)C4—C7—C9120.01 (17)
O3i—Ag1—O1104.84 (6)C6—C7—C9120.99 (17)
O6ii—Ag1—Ag2i82.64 (4)C6—C8—C3121.33 (18)
O3i—Ag1—Ag2i83.04 (4)C6—C8—H8119.3
O1—Ag1—Ag2i162.98 (4)C3—C8—H8119.3
O3—Ag1—O180.23 (5)O6—C9—O5126.56 (19)
O3—Ag1—O3i82.06 (6)O6—C9—C7117.07 (18)
O3—Ag1—O6ii107.63 (5)O5—C9—C7116.36 (17)
O3—Ag1—Ag2i116.16 (4)O7—C10—O8124.57 (19)
O4—Ag2—O5iii158.69 (7)O7—C10—C6117.63 (17)
O4—Ag2—O7iv97.68 (6)O8—C10—C6117.78 (18)
O5iii—Ag2—O7iv97.08 (5)C11—N1—C16122.5 (2)
O4—Ag2—Ag1i81.08 (4)C11—N1—C17120.8 (2)
O5iii—Ag2—Ag1i81.40 (4)C16—N1—C17116.8 (2)
O7iv—Ag2—Ag1i168.58 (4)C12—N2—C13120.7 (2)
O5iv—Ag2—O4119.23 (5)C12—N2—H120.9
O5iv—Ag2—O5iii78.86 (6)C13—N2—H118.3
O5iv—Ag2—O7iv78.31 (5)N1—C11—C15121.4 (2)
O5iv—Ag2—Ag1i112.29 (4)N1—C11—C14122.1 (2)
C1—O1—Ag1123.41 (13)C15—C11—C14116.4 (2)
C1—O2—H2109.5N2—C12—C15121.3 (2)
C2—O3—Ag1i123.07 (13)N2—C12—H12119.3
C2—O4—Ag2124.47 (14)C15—C12—H12119.3
C9—O5—Ag2v123.12 (13)N2—C13—C14121.5 (2)
C9—O6—Ag1ii124.62 (14)N2—C13—H13119.3
C10—O7—Ag2iv121.06 (12)C14—C13—H13119.3
O1—C1—O2123.50 (18)C13—C14—C11119.7 (2)
O1—C1—C5122.02 (17)C13—C14—H14120.1
O2—C1—C5114.46 (17)C11—C14—H14120.1
O4—C2—O3126.86 (19)C12—C15—C11120.3 (2)
O4—C2—C3117.34 (18)C12—C15—H15119.8
O3—C2—C3115.79 (17)C11—C15—H15119.8
C8—C3—C5118.74 (18)N1—C16—H16A109.5
C8—C3—C2119.06 (17)N1—C16—H16B109.5
C5—C3—C2122.18 (17)H16A—C16—H16B109.5
C5—C4—C7121.14 (18)N1—C16—H16C109.5
C5—C4—H4119.4H16A—C16—H16C109.5
C7—C4—H4119.4H16B—C16—H16C109.5
C4—C5—C3119.97 (18)N1—C17—H17A109.5
C4—C5—C1119.38 (17)N1—C17—H17B109.5
C3—C5—C1120.24 (17)H17A—C17—H17B109.5
C8—C6—C7119.81 (18)N1—C17—H17C109.5
C8—C6—C10120.10 (17)H17A—C17—H17C109.5
C7—C6—C10119.93 (17)H17B—C17—H17C109.5
O6ii—Ag1—O1—C131.61 (18)C10—C6—C7—C95.6 (3)
O3i—Ag1—O1—C1155.65 (17)C7—C6—C8—C30.1 (3)
Ag2i—Ag1—O1—C188.4 (2)C10—C6—C8—C3175.26 (19)
O5iii—Ag2—O4—C243.7 (3)C5—C3—C8—C62.1 (3)
O7iv—Ag2—O4—C2177.18 (18)C2—C3—C8—C6176.43 (19)
Ag1i—Ag2—O4—C28.66 (17)Ag1ii—O6—C9—O51.1 (3)
Ag1—O1—C1—O2150.04 (16)Ag1ii—O6—C9—C7179.62 (13)
Ag1—O1—C1—C528.3 (3)Ag2v—O5—C9—O611.0 (3)
Ag2—O4—C2—O32.3 (3)Ag2v—O5—C9—C7168.32 (13)
Ag2—O4—C2—C3177.08 (13)C4—C7—C9—O6120.2 (2)
Ag1i—O3—C2—O49.4 (3)C6—C7—C9—O657.5 (3)
Ag1i—O3—C2—C3171.21 (13)C4—C7—C9—O560.4 (3)
O4—C2—C3—C8119.5 (2)C6—C7—C9—O5121.9 (2)
O3—C2—C3—C860.0 (3)Ag2iv—O7—C10—O8151.16 (17)
O4—C2—C3—C559.0 (3)Ag2iv—O7—C10—C627.2 (2)
O3—C2—C3—C5121.6 (2)C8—C6—C10—O7132.8 (2)
C7—C4—C5—C31.1 (3)C7—C6—C10—O742.6 (3)
C7—C4—C5—C1171.50 (18)C8—C6—C10—O845.6 (3)
C8—C3—C5—C42.6 (3)C7—C6—C10—O8139.0 (2)
C2—C3—C5—C4175.89 (19)C16—N1—C11—C15178.3 (2)
C8—C3—C5—C1170.00 (18)C17—N1—C11—C151.6 (3)
C2—C3—C5—C111.5 (3)C16—N1—C11—C141.2 (4)
O1—C1—C5—C4138.5 (2)C17—N1—C11—C14178.8 (2)
O2—C1—C5—C439.9 (3)C13—N2—C12—C151.2 (4)
O1—C1—C5—C334.1 (3)C12—N2—C13—C140.9 (4)
O2—C1—C5—C3147.48 (19)N2—C13—C14—C110.3 (4)
C5—C4—C7—C60.8 (3)N1—C11—C14—C13179.2 (2)
C5—C4—C7—C9178.56 (19)C15—C11—C14—C131.2 (3)
C8—C6—C7—C41.3 (3)N2—C12—C15—C110.2 (4)
C10—C6—C7—C4176.73 (18)N1—C11—C15—C12179.5 (2)
C8—C6—C7—C9179.04 (19)C14—C11—C15—C120.9 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+2; (v) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H···O7vi0.841.882.720 (2)177
O2—H2···O8vii0.821.732.541 (2)173
Symmetry codes: (vi) x1, y+1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C7H11N2)[Ag2(C10H3O8)]
Mr590.04
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7192 (3), 9.9936 (5), 10.4968 (3)
α, β, γ (°)113.304 (4), 97.140 (3), 103.260 (3)
V3)884.65 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.24 × 0.18 × 0.14
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.611, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
7226, 3124, 2808
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.06
No. of reflections3124
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Ag1—O12.5220 (15)Ag2—O5iii2.2224 (16)
Ag1—O3i2.1784 (15)Ag2—O5iv2.873 (2)
Ag1—O32.7573 (19)Ag2—O7iv2.4442 (15)
Ag1—O6ii2.1765 (15)Ag1—Ag2i2.8189 (3)
Ag2—O42.2091 (15)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H···O7v0.841.882.720 (2)177
O2—H2···O8vi0.821.732.541 (2)173
Symmetry codes: (v) x1, y+1, z; (vi) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the NSF of China (grant No. 20771023), the 863 Program (grant No. 2007 A A03z218) and the Analysis and Testing Foundation of Northeast Normal University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, J. (2008). Acta Cryst. E64, m498–m499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112–m113.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. F., Cao, R., Sun, Y. Q., Bi, W. H., Li, X. J., Wang, Y. Q., Shi, Q. & Li, X. (2003). Inorg. Chem. 42, 7512–7518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, S. L., Tong, M. L., Chen, X. M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.  Web of Science CSD CrossRef Google Scholar
First citationZheng, S. L., Zhang, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem. 172, 45–52.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m994-m995
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds