metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1018-m1019

Poly[[hemi-μ4-oxalato-hemi-μ2-oxalato-bis­­(μ3-pyrazine-2-carboxyl­ato)erbium(III)silver(I)] monohydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 21 June 2009; accepted 27 July 2009; online 31 July 2009)

The asymmetric unit of the title complex, {[AgEr(C5H3N2O2)2(C2O4)]·H2O}n, contains one ErIII atom, one AgI atom, two pyrazine-2-carboxyl­ate (pyc) ligands, two half oxalate ligands (each lying on an inversion center) and one uncoordinated water mol­ecule. The ErIII atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands in a distorted monocapped square-anti­prismatic geometry. The AgI atom is coordinated by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The crystal structure exhibits a three-dimensional heterometallic polymeric network. O—H⋯O hydrogen bonding between the uncoordinated water mol­ecule and carboxyl­ate O atoms is observed.

Related literature

For general background to lanthanide–transition heterometallic complexes, see: Deng et al. (2008[Deng, H., Li, Y.-H., Qiu, Y.-C., Li, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1152-1155.]); Wang et al. (2006[Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]); Zhou et al. (2006[Zhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135-143.]).

[Scheme 1]

Experimental

Crystal data
  • [AgEr(C5H3N2O2)2(C2O4)]·H2O

  • Mr = 627.35

  • Monoclinic, P 21 /c

  • a = 10.0482 (6) Å

  • b = 18.3968 (11) Å

  • c = 8.0371 (5) Å

  • β = 95.397 (1)°

  • V = 1479.11 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.307, Tmax = 0.349 (expected range = 0.232–0.263)

  • 7533 measured reflections

  • 2649 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.050

  • S = 1.04

  • 2649 reflections

  • 244 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O4 2.333 (3)
Er1—O7 2.367 (3)
Er1—O1 2.385 (3)
Er1—O6i 2.387 (3)
Er1—O8ii 2.388 (3)
Er1—O2iii 2.403 (3)
Er1—O5 2.451 (3)
Er1—N1 2.611 (4)
Er1—N3 2.636 (4)
Ag1—N4iv 2.299 (4)
Ag1—O3v 2.312 (3)
Ag1—N2 2.368 (4)
Ag1—O5vi 2.648 (4)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1 0.86 2.14 2.971 (6) 162

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition heterometallic coordination frameworks with bridging multifunctional organic ligands, not only because of their fascinating topological networks but also due to their potential applications in ion exchange, gas storage, catalysis and luminescence (Wang et al., 2006; Zhou et al., 2006). As a building block, pyrazine-2-carboxylate (pyc) and oxalate are excellent candidates for the construction of heterometallic complexes (Deng et al., 2008). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

The asymmetric unit of the title complex contains one ErIII atom, one AgI atom, two pyc ligands, two half oxalate ligands, each lying on an inversion center, and one uncoordinated water molecule (Fig. 1). The ErIII atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands. The coordination geometry around the ErIII atom can be described as distorted monocapped square-antiprismatic, with Er—O bond distances and O—Er—O bond angles range from 2.333 (3) to 2.451 (3) Å and 66.24 (9) to 147.36 (10)°, respectively (Table 1). The AgI atom has a distorted tetrahedral coordination geometry, defined by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The Ag—N and Ag—O bond distances vary from 2.299 (4) to 2.648 (4) Å. The oxalate ligands bridge the Er atoms to form a zigzag chain. These chains are further interconnected by Ag–pyc subunits into a three-dimensional polymeric network (Fig. 2). O—H···O hydrogen bond involving the carboxylate O atoms of the pyc ligands and uncoordinated water molecules further enhance the stability of the three-dimensional network (Table 2).

Related literature top

For general background to lanthanide–transition heterometallic complexes, see: Deng et al. (2008); Wang et al. (2006); Zhou et al. (2006).

Experimental top

A mixture of Er2O3 (0.183 g, 0.5 mmol), AgNO3 (0.170 g, 1 mmol), pyrazine-2-carboxylic acid (0.124 g, 1 mmol), oxalic acid (0.09 g, 1 mmol) and water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1. Colorless block crystals were obtained.

Refinement top

Water H atoms were tentatively located in a difference Fourier map and refined with distance restraints of O—H = 0.86 (1) and H···H = 1.35 Å, and with Uiso(H) = 1.5Ueq(O). H atoms attached to C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.84 Å from Ag1 and the deepest hole 0.73 Å from Ag1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, -y, -z; (ii) 1-x, -y, 1-z; (iii) x, 1/2-y, -1/2+z; (iv) 1+x, 1/2-y, -1/2+z; (v) 1+x, 1/2-y, 1/2+z; (vi) 1-x, 1/2+y, 1/2-z.]
[Figure 2] Fig. 2. Packing diagram of the title compound.
Poly[[hemi-µ4-oxalato-hemi-µ2-oxalato-bis(µ3-pyrazine-2- carboxylato)erbium(III)silver(I)] monohydrate] top
Crystal data top
[AgEr(C5H3N2O2)2(C2O4)]·H2OF(000) = 1180
Mr = 627.35Dx = 2.817 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5128 reflections
a = 10.0482 (6) Åθ = 2.2–28.2°
b = 18.3968 (11) ŵ = 7.02 mm1
c = 8.0371 (5) ÅT = 296 K
β = 95.397 (1)°Block, colorless
V = 1479.11 (16) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2649 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.307, Tmax = 0.349k = 2219
7533 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.024P)2 + 4.153P]
where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.43 e Å3
12 restraintsΔρmin = 1.14 e Å3
Crystal data top
[AgEr(C5H3N2O2)2(C2O4)]·H2OV = 1479.11 (16) Å3
Mr = 627.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0482 (6) ŵ = 7.02 mm1
b = 18.3968 (11) ÅT = 296 K
c = 8.0371 (5) Å0.22 × 0.20 × 0.19 mm
β = 95.397 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2649 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2450 reflections with I > 2σ(I)
Tmin = 0.307, Tmax = 0.349Rint = 0.019
7533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02112 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.04Δρmax = 1.43 e Å3
2649 reflectionsΔρmin = 1.14 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.364162 (17)0.105359 (10)0.24162 (2)0.01442 (7)
Ag10.85087 (4)0.42746 (2)0.39306 (4)0.03045 (11)
O10.2989 (3)0.21768 (16)0.3579 (4)0.0242 (7)
O20.3493 (3)0.32200 (16)0.4921 (4)0.0235 (7)
O30.0813 (3)0.0887 (2)0.1736 (4)0.0317 (8)
O40.1381 (3)0.09487 (18)0.1482 (4)0.0250 (7)
O50.3318 (3)0.01811 (16)0.0110 (4)0.0207 (6)
O70.5023 (3)0.09455 (15)0.4957 (4)0.0199 (6)
N10.5506 (3)0.20455 (19)0.2760 (4)0.0190 (8)
N20.7204 (4)0.3245 (2)0.3075 (5)0.0289 (9)
N30.1969 (4)0.09160 (19)0.4735 (4)0.0194 (8)
N40.0028 (4)0.0827 (2)0.6909 (4)0.0239 (8)
C10.3752 (4)0.2695 (2)0.4013 (5)0.0193 (9)
C20.5118 (4)0.2678 (2)0.3374 (5)0.0195 (9)
C30.5950 (4)0.3270 (3)0.3465 (6)0.0259 (10)
H30.56210.37110.38180.031*
C40.7614 (5)0.2604 (3)0.2544 (6)0.0287 (11)
H40.84910.25540.22820.034*
C50.6765 (4)0.2009 (3)0.2372 (6)0.0255 (10)
H50.70820.15730.19760.031*
C60.0371 (4)0.0914 (2)0.2309 (5)0.0185 (9)
C70.0668 (4)0.0902 (2)0.4181 (5)0.0183 (9)
C80.0327 (4)0.0862 (3)0.5258 (5)0.0223 (10)
H80.12190.08600.48240.027*
C90.1265 (4)0.0855 (3)0.7468 (5)0.0267 (10)
H90.15080.08450.86140.032*
C100.2255 (4)0.0900 (3)0.6381 (6)0.0269 (10)
H100.31450.09200.68180.032*
C110.4313 (4)0.0108 (2)0.0429 (5)0.0164 (9)
C120.5388 (4)0.0323 (2)0.5434 (5)0.0176 (9)
O1W0.0424 (5)0.2589 (3)0.4885 (8)0.0827 (16)
H1W0.10960.25210.43140.124*
H2W0.06620.23680.58160.124*
O60.4323 (3)0.05626 (16)0.1587 (4)0.0212 (7)
O80.6284 (3)0.01649 (16)0.6555 (4)0.0226 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01594 (11)0.01469 (11)0.01268 (11)0.00069 (7)0.00162 (7)0.00034 (7)
Ag10.0286 (2)0.0423 (2)0.02146 (19)0.00868 (16)0.00783 (14)0.00439 (16)
O10.0201 (15)0.0210 (16)0.0326 (18)0.0023 (13)0.0074 (13)0.0060 (14)
O20.0281 (17)0.0210 (16)0.0212 (16)0.0042 (13)0.0014 (13)0.0076 (13)
O30.0201 (16)0.059 (2)0.0152 (16)0.0027 (15)0.0017 (13)0.0041 (15)
O40.0199 (16)0.042 (2)0.0140 (15)0.0004 (13)0.0046 (12)0.0007 (14)
O50.0205 (15)0.0238 (17)0.0176 (15)0.0042 (13)0.0006 (12)0.0029 (13)
O70.0255 (16)0.0166 (15)0.0169 (15)0.0009 (12)0.0013 (12)0.0016 (12)
N10.0229 (19)0.0172 (18)0.0170 (18)0.0012 (14)0.0025 (14)0.0010 (15)
N20.027 (2)0.028 (2)0.032 (2)0.0040 (17)0.0074 (17)0.0054 (18)
N30.0221 (19)0.0197 (19)0.0165 (19)0.0003 (15)0.0029 (14)0.0004 (15)
N40.025 (2)0.032 (2)0.0160 (19)0.0015 (16)0.0052 (15)0.0012 (16)
C10.025 (2)0.019 (2)0.013 (2)0.0028 (18)0.0001 (17)0.0025 (18)
C20.025 (2)0.018 (2)0.015 (2)0.0029 (17)0.0000 (17)0.0000 (17)
C30.027 (2)0.020 (2)0.031 (3)0.0018 (19)0.0060 (19)0.008 (2)
C40.020 (2)0.031 (3)0.035 (3)0.0030 (19)0.006 (2)0.004 (2)
C50.022 (2)0.026 (2)0.028 (2)0.0039 (19)0.0025 (19)0.006 (2)
C60.021 (2)0.018 (2)0.016 (2)0.0029 (17)0.0032 (17)0.0011 (17)
C70.020 (2)0.018 (2)0.017 (2)0.0001 (17)0.0016 (17)0.0000 (17)
C80.019 (2)0.032 (3)0.016 (2)0.0006 (19)0.0033 (17)0.0000 (19)
C90.028 (3)0.039 (3)0.013 (2)0.006 (2)0.0032 (18)0.004 (2)
C100.019 (2)0.044 (3)0.018 (2)0.001 (2)0.0023 (18)0.000 (2)
C110.023 (2)0.013 (2)0.013 (2)0.0026 (16)0.0016 (17)0.0050 (17)
C120.019 (2)0.021 (2)0.013 (2)0.0000 (17)0.0041 (16)0.0021 (17)
O1W0.053 (3)0.067 (3)0.130 (5)0.008 (2)0.013 (3)0.020 (3)
O60.0200 (15)0.0215 (16)0.0224 (16)0.0006 (12)0.0033 (12)0.0073 (13)
O80.0237 (16)0.0220 (16)0.0209 (16)0.0013 (13)0.0038 (13)0.0024 (13)
Geometric parameters (Å, º) top
Er1—O42.333 (3)N3—C101.328 (6)
Er1—O72.367 (3)N3—C71.341 (5)
Er1—O12.385 (3)N4—C81.335 (5)
Er1—O6i2.387 (3)N4—C91.336 (6)
Er1—O8ii2.388 (3)C1—C21.510 (6)
Er1—O2iii2.403 (3)C2—C31.370 (6)
Er1—O52.451 (3)C3—H30.9300
Er1—N12.611 (4)C4—C51.387 (7)
Er1—N32.636 (4)C4—H40.9300
Ag1—N4iv2.299 (4)C5—H50.9300
Ag1—O3v2.312 (3)C6—C71.506 (6)
Ag1—N22.368 (4)C7—C81.385 (6)
Ag1—O5vi2.648 (4)C8—H80.9300
O1—C11.253 (5)C9—C101.387 (6)
O2—C11.252 (5)C9—H90.9300
O3—C61.236 (5)C10—H100.9300
O4—C61.265 (5)C11—O61.252 (5)
O5—C111.245 (5)C11—C11i1.537 (8)
O7—C121.252 (5)C12—O81.247 (5)
N1—C51.332 (6)C12—C12ii1.549 (8)
N1—C21.337 (5)O1W—H1W0.86
N2—C31.328 (6)O1W—H2W0.86
N2—C41.332 (6)
O4—Er1—O7138.16 (10)C3—N2—C4115.8 (4)
O4—Er1—O184.40 (11)C3—N2—Ag1114.5 (3)
O7—Er1—O183.98 (10)C4—N2—Ag1128.4 (3)
O4—Er1—O6i135.46 (10)C10—N3—C7116.3 (4)
O7—Er1—O6i76.17 (10)C10—N3—Er1127.9 (3)
O1—Er1—O6i135.36 (10)C7—N3—Er1115.7 (3)
O4—Er1—O8ii91.81 (11)C8—N4—C9117.0 (4)
O7—Er1—O8ii68.02 (10)C8—N4—Ag1ix127.4 (3)
O1—Er1—O8ii132.72 (11)C9—N4—Ag1ix115.6 (3)
O6i—Er1—O8ii75.03 (10)O2—C1—O1126.4 (4)
O4—Er1—O2iii78.18 (10)O2—C1—C2117.4 (4)
O7—Er1—O2iii138.78 (10)O1—C1—C2116.2 (4)
O1—Er1—O2iii81.23 (11)N1—C2—C3120.9 (4)
O6i—Er1—O2iii87.99 (10)N1—C2—C1116.7 (4)
O8ii—Er1—O2iii143.95 (10)C3—C2—C1122.3 (4)
O4—Er1—O569.30 (10)N2—C3—C2123.2 (4)
O7—Er1—O5128.53 (10)N2—C3—H3118.4
O1—Er1—O5147.36 (10)C2—C3—H3118.4
O6i—Er1—O566.24 (9)N2—C4—C5121.7 (4)
O8ii—Er1—O569.19 (10)N2—C4—H4119.2
O2iii—Er1—O574.90 (10)C5—C4—H4119.2
O4—Er1—N1139.39 (11)N1—C5—C4121.7 (4)
O7—Er1—N167.09 (10)N1—C5—H5119.1
O1—Er1—N164.79 (10)C4—C5—H5119.1
O6i—Er1—N170.67 (10)O3—C6—O4126.7 (4)
O8ii—Er1—N1128.36 (10)O3—C6—C7117.7 (4)
O2iii—Er1—N171.78 (10)O4—C6—C7115.6 (4)
O5—Er1—N1125.49 (10)N3—C7—C8122.2 (4)
O4—Er1—N363.46 (10)N3—C7—C6115.2 (4)
O7—Er1—N375.12 (11)C8—C7—C6122.6 (4)
O1—Er1—N365.75 (11)N4—C8—C7121.0 (4)
O6i—Er1—N3141.34 (11)N4—C8—H8119.5
O8ii—Er1—N370.51 (11)C7—C8—H8119.5
O2iii—Er1—N3130.51 (11)N4—C9—C10121.6 (4)
O5—Er1—N3115.07 (10)N4—C9—H9119.2
N1—Er1—N3119.41 (11)C10—C9—H9119.2
N4iv—Ag1—O3v121.94 (12)N3—C10—C9121.9 (4)
N4iv—Ag1—N295.91 (13)N3—C10—H10119.0
O3v—Ag1—N2106.55 (13)C9—C10—H10119.0
C1—O1—Er1125.8 (3)O5—C11—O6127.3 (4)
C1—O2—Er1vii156.2 (3)O5—C11—C11i116.8 (4)
C6—O3—Ag1viii123.6 (3)O6—C11—C11i115.9 (4)
C6—O4—Er1129.8 (3)O8—C12—O7127.2 (4)
C11—O5—Er1119.3 (3)O8—C12—C12ii116.4 (5)
C12—O7—Er1118.2 (3)O7—C12—C12ii116.3 (4)
C5—N1—C2116.5 (4)H1W—O1W—H2W103.0
C5—N1—Er1128.9 (3)C11—O6—Er1i121.8 (3)
C2—N1—Er1114.6 (3)C12—O8—Er1ii117.8 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x1, y+1/2, z1/2; (ix) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.862.142.971 (6)162

Experimental details

Crystal data
Chemical formula[AgEr(C5H3N2O2)2(C2O4)]·H2O
Mr627.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0482 (6), 18.3968 (11), 8.0371 (5)
β (°) 95.397 (1)
V3)1479.11 (16)
Z4
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.307, 0.349
No. of measured, independent and
observed [I > 2σ(I)] reflections
7533, 2649, 2450
Rint0.019
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.04
No. of reflections2649
No. of parameters244
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O42.333 (3)Er1—N12.611 (4)
Er1—O72.367 (3)Er1—N32.636 (4)
Er1—O12.385 (3)Ag1—N4iv2.299 (4)
Er1—O6i2.387 (3)Ag1—O3v2.312 (3)
Er1—O8ii2.388 (3)Ag1—N22.368 (4)
Er1—O2iii2.403 (3)Ag1—O5vi2.648 (4)
Er1—O52.451 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.862.142.971 (6)162
 

Acknowledgements

The authors acknowledge China Postdoctoral Science Foundation (project No. 20080440764), Guangdong Province Natural Science Foundation (project No. 9451063101002082), the Key Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities for supporting this work, and also the Young Teacher Training Plan of Guangdong Universities.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, H., Li, Y.-H., Qiu, Y.-C., Li, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1152–1155.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135–143.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1018-m1019
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds