metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­bromidobis(tri­phenyl­phosphine-κP)palladium(II) chloro­form monosolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 July 2009; accepted 12 July 2009; online 18 July 2009)

The PdII atom in the title compound, [PdBr2{P(C6H5)3}2]·CHCl3, lies on a twofold rotation axis and is coordinated in a distorted square-planar geometry by two P atoms from two triphenyl­phosphine ligands and by two Br atoms in a trans arrangement. The chloro­form solvent mol­ecule is equally disordered about another twofold rotation axis.

Related literature

For isostructural PdI2(PPh3)2·CHCl3, see: Kubota et al. (1991[Kubota, M., Ohba, S. & Saito, Y. (1991). Acta Cryst. C47, 1727-1729.]). For the other solvates of PdBr2(PPh3)2, see: Crawforth et al. (2005[Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). Tetrahedron, 61, 9736-9751.]); Rodríguez et al. (2007[Rodríguez, N., de Arellano, C. M., Asensio, G. & Medio-Simón, M. (2007). Chem. Eur. J. 13, 4223-4229.]); Stark & Whitmire (1997[Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C18H15P)2]·CHCl3

  • Mr = 910.13

  • Monoclinic, C 2/c

  • a = 12.2314 (2) Å

  • b = 14.4754 (2) Å

  • c = 20.1653 (3) Å

  • β = 92.477 (1)°

  • V = 3567.02 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.10 mm−1

  • T = 153 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.456, Tmax = 0.576 (expected range = 0.426–0.538)

  • 16862 measured reflections

  • 4110 independent reflections

  • 3266 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.02

  • 4110 reflections

  • 222 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—P1 2.3360 (5)
Pd1—Br1 2.4277 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For isostructural PdI2(PPh3)2.CHCl3, see: Kubota et al. (1991). For the other solvates of PdBr2(PPh3)2, see: Crawforth et al. (2005); Rodríguez et al. (2007); Stark & Whitmire (1997).

Experimental top

Commercially available dark-brown bis(triphenylphosphine)palladium dichloride (0.70 g, 1 mmol) and 4-dimethylaminopyridinium hydrobromide perbromide (0.36 g, 1 mmol) were heated in an ethanol/chloroform mixture (1:1 v/v, 100 ml) for an hour. The solution was filtered and a small amount of deep yellow crystals were isolated along with some dark brown material.

Refinement top

H atoms were placed at calculated positions (C–H = 0.95 and 1.00 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C). The chloroform molecule is disordered about a twofold rotation axis, and was allowed to refine off the symmetry element as a whole molecule of 0.5 site occupancy. The three C—Cl distances were restrained to within 0.01 Å of each other, as were the Cl···Cl distances. The anisotropic displacements of the Cl atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level.
trans-Dibromidobis(triphenylphosphine-κP)palladium(II) chloroform monosolvate top
Crystal data top
[PdBr2(C18H15P)2]·CHCl3F(000) = 1800
Mr = 910.13Dx = 1.695 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6987 reflections
a = 12.2314 (2) Åθ = 2.4–28.3°
b = 14.4754 (2) ŵ = 3.10 mm1
c = 20.1653 (3) ÅT = 153 K
β = 92.477 (1)°Prism, brown
V = 3567.02 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4110 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.456, Tmax = 0.576k = 1818
16862 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0263P)2 + 6.7144P]
where P = (Fo2 + 2Fc2)/3
4110 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.47 e Å3
24 restraintsΔρmin = 0.36 e Å3
Crystal data top
[PdBr2(C18H15P)2]·CHCl3V = 3567.02 (9) Å3
Mr = 910.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.2314 (2) ŵ = 3.10 mm1
b = 14.4754 (2) ÅT = 153 K
c = 20.1653 (3) Å0.30 × 0.25 × 0.20 mm
β = 92.477 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3266 reflections with I > 2σ(I)
Tmin = 0.456, Tmax = 0.576Rint = 0.018
16862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02324 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
4110 reflectionsΔρmin = 0.36 e Å3
222 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.50000.250839 (14)0.25000.01811 (6)
Br10.322982 (17)0.253392 (15)0.299982 (11)0.02692 (7)
P10.59326 (4)0.25342 (3)0.35355 (3)0.01868 (11)
C10.70341 (17)0.16892 (14)0.35728 (10)0.0226 (4)
C20.6778 (2)0.08037 (16)0.33385 (12)0.0324 (5)
H20.60640.06750.31590.039*
C30.7560 (2)0.01137 (17)0.33665 (13)0.0418 (6)
H30.73780.04920.32170.050*
C40.8602 (2)0.0307 (2)0.36119 (13)0.0465 (7)
H40.91420.01650.36240.056*
C50.8869 (2)0.1177 (2)0.38400 (14)0.0443 (7)
H50.95910.13030.40080.053*
C60.80823 (19)0.18742 (17)0.38251 (11)0.0306 (5)
H60.82640.24730.39870.037*
C70.51852 (17)0.22807 (14)0.42793 (10)0.0218 (4)
C80.4458 (2)0.29338 (17)0.45150 (12)0.0339 (5)
H80.43570.35040.42870.041*
C90.3886 (2)0.2759 (2)0.50751 (13)0.0405 (6)
H90.33970.32120.52310.049*
C100.4014 (2)0.19368 (19)0.54117 (12)0.0369 (6)
H100.36130.18200.57960.044*
C110.4724 (2)0.12875 (17)0.51881 (12)0.0356 (6)
H110.48210.07210.54210.043*
C120.53046 (19)0.14535 (15)0.46205 (11)0.0292 (5)
H120.57870.09950.44660.035*
C130.65111 (17)0.36690 (14)0.37174 (10)0.0219 (4)
C140.6954 (2)0.38791 (16)0.43498 (11)0.0314 (5)
H140.69380.34320.46940.038*
C150.7417 (2)0.47408 (16)0.44744 (12)0.0352 (6)
H150.77200.48810.49040.042*
C160.7439 (2)0.53955 (15)0.39760 (12)0.0316 (5)
H160.77760.59780.40600.038*
C170.6973 (2)0.52028 (15)0.33583 (12)0.0315 (5)
H170.69680.56600.30200.038*
C180.65112 (18)0.43408 (14)0.32274 (11)0.0258 (5)
H180.61930.42110.27990.031*
Cl10.0544 (6)0.4068 (4)0.1875 (3)0.083 (2)0.50
Cl20.0249 (2)0.23500 (12)0.23506 (13)0.0769 (8)0.50
Cl30.0654 (5)0.4028 (2)0.3067 (2)0.0454 (8)0.50
C190.0330 (4)0.3413 (3)0.2596 (2)0.0423 (13)0.50
H190.10300.33210.28620.051*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02113 (11)0.01538 (10)0.01773 (11)0.0000.00004 (8)0.000
Br10.02633 (11)0.02758 (12)0.02707 (12)0.00200 (9)0.00362 (8)0.00051 (9)
P10.0216 (2)0.0161 (2)0.0182 (2)0.0013 (2)0.00033 (19)0.00040 (19)
C10.0282 (11)0.0208 (10)0.0190 (10)0.0061 (8)0.0032 (8)0.0033 (8)
C20.0430 (14)0.0238 (11)0.0302 (12)0.0056 (10)0.0000 (10)0.0027 (9)
C30.0663 (19)0.0268 (12)0.0327 (13)0.0174 (12)0.0091 (13)0.0022 (10)
C40.0561 (18)0.0461 (16)0.0382 (15)0.0334 (14)0.0129 (13)0.0146 (12)
C50.0313 (13)0.0581 (18)0.0434 (15)0.0148 (12)0.0005 (11)0.0121 (13)
C60.0291 (12)0.0335 (12)0.0292 (12)0.0037 (9)0.0019 (10)0.0050 (9)
C70.0223 (10)0.0233 (10)0.0194 (10)0.0015 (8)0.0020 (8)0.0006 (8)
C80.0394 (13)0.0319 (13)0.0311 (13)0.0094 (11)0.0082 (11)0.0063 (10)
C90.0385 (14)0.0485 (15)0.0353 (14)0.0093 (12)0.0113 (11)0.0042 (12)
C100.0363 (13)0.0515 (16)0.0234 (12)0.0087 (12)0.0078 (10)0.0012 (11)
C110.0462 (15)0.0323 (13)0.0286 (12)0.0070 (11)0.0047 (11)0.0071 (10)
C120.0361 (13)0.0232 (11)0.0284 (12)0.0003 (9)0.0031 (10)0.0021 (9)
C130.0247 (10)0.0178 (9)0.0232 (10)0.0005 (8)0.0011 (8)0.0023 (8)
C140.0429 (14)0.0257 (11)0.0253 (11)0.0031 (10)0.0036 (10)0.0004 (9)
C150.0459 (14)0.0312 (12)0.0279 (12)0.0034 (11)0.0060 (11)0.0074 (10)
C160.0375 (13)0.0212 (11)0.0366 (13)0.0056 (10)0.0062 (10)0.0084 (9)
C170.0429 (14)0.0206 (10)0.0315 (12)0.0019 (10)0.0077 (11)0.0018 (9)
C180.0329 (12)0.0210 (10)0.0233 (11)0.0002 (9)0.0012 (9)0.0008 (8)
Cl10.087 (3)0.103 (3)0.059 (2)0.013 (2)0.0104 (18)0.0265 (19)
Cl20.078 (2)0.0667 (10)0.089 (2)0.0211 (10)0.0363 (14)0.0134 (10)
Cl30.0476 (13)0.0525 (16)0.0375 (14)0.0017 (12)0.0166 (12)0.0003 (12)
C190.030 (3)0.056 (3)0.041 (3)0.004 (2)0.003 (2)0.007 (3)
Geometric parameters (Å, º) top
Pd1—P12.3360 (5)C9—C101.376 (4)
Pd1—P1i2.3360 (5)C9—H90.9500
Pd1—Br12.4277 (2)C10—C111.369 (4)
Pd1—Br1i2.4277 (2)C10—H100.9500
P1—C11.819 (2)C11—C121.394 (3)
P1—C131.820 (2)C11—H110.9500
P1—C71.827 (2)C12—H120.9500
C1—C61.385 (3)C13—C181.386 (3)
C1—C21.397 (3)C13—C141.397 (3)
C2—C31.382 (3)C14—C151.388 (3)
C2—H20.9500C14—H140.9500
C3—C41.377 (4)C15—C161.383 (3)
C3—H30.9500C15—H150.9500
C4—C51.375 (4)C16—C171.376 (3)
C4—H40.9500C16—H160.9500
C5—C61.394 (3)C17—C181.390 (3)
C5—H50.9500C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C121.386 (3)Cl1—C191.764 (5)
C7—C81.395 (3)Cl2—C191.756 (4)
C8—C91.377 (3)Cl3—C191.800 (5)
C8—H80.9500C19—H191.0000
P1—Pd1—P1i178.16 (3)C10—C9—C8120.8 (2)
P1—Pd1—Br192.204 (14)C10—C9—H9119.6
P1i—Pd1—Br187.768 (14)C8—C9—H9119.6
P1—Pd1—Br1i87.768 (14)C11—C10—C9119.5 (2)
P1i—Pd1—Br1i92.204 (14)C11—C10—H10120.3
Br1—Pd1—Br1i178.256 (14)C9—C10—H10120.3
C1—P1—C13108.54 (10)C10—C11—C12120.3 (2)
C1—P1—C7103.12 (9)C10—C11—H11119.8
C13—P1—C7102.70 (9)C12—C11—H11119.8
C1—P1—Pd1111.00 (7)C7—C12—C11120.7 (2)
C13—P1—Pd1111.42 (7)C7—C12—H12119.7
C7—P1—Pd1119.22 (7)C11—C12—H12119.7
C6—C1—C2119.5 (2)C18—C13—C14119.07 (19)
C6—C1—P1123.88 (17)C18—C13—P1120.10 (16)
C2—C1—P1116.65 (17)C14—C13—P1120.83 (16)
C3—C2—C1120.4 (2)C15—C14—C13120.0 (2)
C3—C2—H2119.8C15—C14—H14120.0
C1—C2—H2119.8C13—C14—H14120.0
C4—C3—C2119.7 (2)C16—C15—C14120.3 (2)
C4—C3—H3120.1C16—C15—H15119.8
C2—C3—H3120.1C14—C15—H15119.8
C5—C4—C3120.6 (2)C17—C16—C15119.9 (2)
C5—C4—H4119.7C17—C16—H16120.0
C3—C4—H4119.7C15—C16—H16120.0
C4—C5—C6120.2 (3)C16—C17—C18120.2 (2)
C4—C5—H5119.9C16—C17—H17119.9
C6—C5—H5119.9C18—C17—H17119.9
C1—C6—C5119.7 (2)C13—C18—C17120.4 (2)
C1—C6—H6120.2C13—C18—H18119.8
C5—C6—H6120.2C17—C18—H18119.8
C12—C7—C8118.1 (2)Cl2—C19—Cl1108.1 (3)
C12—C7—P1122.38 (17)Cl2—C19—Cl3108.1 (3)
C8—C7—P1119.50 (17)Cl1—C19—Cl3107.2 (3)
C9—C8—C7120.6 (2)Cl2—C19—H19111.1
C9—C8—H8119.7Cl1—C19—H19111.1
C7—C8—H8119.7Cl3—C19—H19111.1
Br1—Pd1—P1—C1134.30 (8)C13—P1—C7—C850.5 (2)
Br1i—Pd1—P1—C147.44 (8)Pd1—P1—C7—C873.26 (19)
Br1—Pd1—P1—C13104.60 (7)C12—C7—C8—C90.6 (4)
Br1i—Pd1—P1—C1373.65 (7)P1—C7—C8—C9179.9 (2)
Br1—Pd1—P1—C714.74 (8)C7—C8—C9—C100.4 (4)
Br1i—Pd1—P1—C7167.00 (8)C8—C9—C10—C110.4 (4)
C13—P1—C1—C611.4 (2)C9—C10—C11—C120.6 (4)
C7—P1—C1—C697.0 (2)C8—C7—C12—C110.9 (3)
Pd1—P1—C1—C6134.19 (17)P1—C7—C12—C11179.67 (18)
C13—P1—C1—C2169.57 (17)C10—C11—C12—C70.9 (4)
C7—P1—C1—C282.00 (18)C1—P1—C13—C18112.87 (18)
Pd1—P1—C1—C246.79 (18)C7—P1—C13—C18138.41 (18)
C6—C1—C2—C30.9 (3)Pd1—P1—C13—C189.6 (2)
P1—C1—C2—C3178.16 (19)C1—P1—C13—C1467.5 (2)
C1—C2—C3—C41.6 (4)C7—P1—C13—C1441.2 (2)
C2—C3—C4—C51.1 (4)Pd1—P1—C13—C14169.98 (16)
C3—C4—C5—C60.0 (4)C18—C13—C14—C152.0 (3)
C2—C1—C6—C50.2 (3)P1—C13—C14—C15178.35 (19)
P1—C1—C6—C5179.22 (18)C13—C14—C15—C160.2 (4)
C4—C5—C6—C10.7 (4)C14—C15—C16—C171.8 (4)
C1—P1—C7—C1217.3 (2)C15—C16—C17—C182.1 (4)
C13—P1—C7—C12130.09 (19)C14—C13—C18—C171.8 (3)
Pd1—P1—C7—C12106.19 (18)P1—C13—C18—C17178.57 (17)
C1—P1—C7—C8163.24 (19)C16—C17—C18—C130.2 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[PdBr2(C18H15P)2]·CHCl3
Mr910.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)12.2314 (2), 14.4754 (2), 20.1653 (3)
β (°) 92.477 (1)
V3)3567.02 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.456, 0.576
No. of measured, independent and
observed [I > 2σ(I)] reflections
16862, 4110, 3266
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.02
No. of reflections4110
No. of parameters222
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Pd1—P12.3360 (5)Pd1—Br12.4277 (2)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). Tetrahedron, 61, 9736–9751.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubota, M., Ohba, S. & Saito, Y. (1991). Acta Cryst. C47, 1727–1729.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRodríguez, N., de Arellano, C. M., Asensio, G. & Medio-Simón, M. (2007). Chem. Eur. J. 13, 4223–4229.  PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds