metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m958-m959

4-(Di­methyl­amino)pyridinium tri­bromido­{3-[bromo/hydro­(0.9/0.1)]-4-(di­methyl­amino)pyridine-κN1}cobaltate(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 July 2009; accepted 15 July 2009; online 22 July 2009)

The reaction of a cobalt(II) salt with 4-(dimethyl­amino)pyridinium hydro­bromide perbromide yielded the title compound, (C7H11N2)[CoBr3(C7H9.1Br0.9N2)]. In the anion, the CoII atom is coordinated in a distorted tetra­hedral geometry by three Br atoms and the pyridine N atom of a bromine-substituted 4-(dimethyl­amino)pyridine mol­ecule, whose formation probably results from an incomplete substitution (90%) catalysed by the CoII ion. One of the three bromine atoms bonded to the metal is disordered over two sites in a 0.9:0.1 ratio. An N—H⋯Br hydrogen bond connects the cation and anion.

Related literature

For bis­(4-(dimethyl­amino)pyridinium) tetra­bromidocobaltate, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m859.]). For other trihalocobaltate(II) anions having a pyridine-type donor ligand, see: Bogdanović et al. (2001[Bogdanović, G. A., Medaković, V. B., Vojinović, L. S., Češljević, V., Leovać, V. M., Biré, A. S. & Zarić, S. D. (2001). Polyhedron, 20, 2231-2240.]); Crane et al. (2004[Crane, J. D., Emeleus, L. C., Harrison, D. & Nilsson, P. A. (2004). Inorg. Chim. Acta, 357, 3407-3412.]); Divjaković et al. (1982[Divjaković, V., Leovac, V. M., Ribár, B., Argay, Gy. & Kálmán, A. (1982). Acta Cryst. B38, 1738-1741.]); Hahn et al. (1997[Hahn, F. E., Scharn, D. & Lügger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.]); Mueller-Westerhoff et al. (1996[Mueller-Westerhoff, U., Rheingold, A. L. & Allen, M. B. (1996). Private communication to the CCDC (refcode: NACRAK). CCDC, Cambridge, England.]); Sumner & Steinmetz (1985[Sumner, C. D. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124-6126.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[CoBr3(C7H9.1Br0.9N2)]

  • Mr = 615.02

  • Triclinic, [P \overline 1]

  • a = 8.3768 (2) Å

  • b = 10.2622 (2) Å

  • c = 12.4691 (3) Å

  • α = 99.028 (2)°

  • β = 98.927 (1)°

  • γ = 106.933 (2)°

  • V = 989.57 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.74 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.128, Tmax = 0.475 (expected range = 0.112–0.417)

  • 7974 measured reflections

  • 4451 independent reflections

  • 3019 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 0.97

  • 4451 reflections

  • 221 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Br1 2.4086 (11)
Co1—Br2 2.3958 (10)
Co1—Br3 2.3814 (13)
Co1—Br3′ 2.376 (9)
Co1—N1 2.032 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br1 0.88 2.74 3.434 (6) 137

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The reaction of cobalt(II) nitrate and 4-(dimethylamino)pyridinium hydrobromide perbromide yields bis(4-(dimethylamino)pyridinium) tetrabromidocobaltate (Lo & Ng, 2009). A similar reaction with cobalt acetate in place of cobalt nitrate yields a new 4-(dimethylamino)pyridinium salt, [C7H11N2][CoBr3(C7H9.1Br0.9N2)] (Scheme 1, Fig. 1). The CoII atom is coordinated by a bromine-substituted 4-(dimethylamino)pyridine molecule, whose formation probably results from an incomplete (90%) electrophilic substitution of 4-(dimethylamino)pyridine that is probabably catalyzed by the cobaltous ion.

Related literature top

For bis(4-(dimethylamino)pyridinium) tetrabromidocobaltate, see: Lo & Ng (2009). For other trihalocobaltate(II) anions having a pyridine-type donor ligand, see: Bogdanović et al. (2001); Crane et al. (2004); Divjaković et al. (1982); Hahn et al. (1997); Mueller-Westerhoff et al. (1996); Sumner & Steinmetz (1985).

Experimental top

Green cobalt acetate (0.70 g, 2.8 mmol) dissolved in water (2 ml) and 4-(dimethylamino)pyridinium hydrobromide perbromide (1.00 g, 2.8 mmol) dissolved in ethanol (50 ml) were mixed and the mixture was heated for one hour. The red solution was filtered; well-formed deep-blue crystals were isolated from the solution after several days.

Refinement top

H atoms were placed at calculated positions (C—H = 0.95 and 0.98, N—H = 0.88 Å) and were treated as riding on their parent atoms, with Uiso(H) = 1.2(or 1.5)Ueq(C).

One of the three Br atoms that are bonded to Co1 is disordered over two positions (Br3 and Br3'). The Br3 atom is 3.5 Å from Br4i atom [symmetry code: (i) = 1-x, 1-y, 2-z]. However, as the Br3' atom is only 3.0 Å from Br4i, the atom that is linked to the C2 atom should then be a mixture of Br and H atoms, with the provision that the occupancies of the Br3 and Br4 atoms are identical. As the occupancies refined to nearly 0.9:0.1, the occupancy factors were then fixed as 0.90 and 0.1 for Br3 and Br3', as well as for Br4 and H2. Other ratios, e.g. 0.85:0.15 and 0.95:0.05, gave less satisfactory R indices and large peaks/deep holes in the difference Fourier map. The anisotropic displacement of the minor occupant was restrained to be nearly isotropic; the Co–Br distances were restrained to within 0.01 Å of each other.

The final difference Fourier map had a peak in the vicinity of Br2 and a hole in the vicinty of Br4. The magnitudes of both could be decreased by lowering the 2θ limit to 50°.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level. Minor disordered sites are omitted for clarity.
4-(Dimethylamino)pyridinium tribromido{3-[bromo/hydro(0.9/0.1)]-4- (dimethylamino)pyridine-κN1}cobaltate(II) top
Crystal data top
(C7H11N2)[CoBr3(C7H9.1Br0.9N2)]Z = 2
Mr = 615.02F(000) = 591.2
Triclinic, P1Dx = 2.064 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3768 (2) ÅCell parameters from 6987 reflections
b = 10.2622 (2) Åθ = 2.4–28.3°
c = 12.4691 (3) ŵ = 8.74 mm1
α = 99.028 (2)°T = 150 K
β = 98.927 (1)°Block, brown
γ = 106.933 (2)°0.40 × 0.20 × 0.10 mm
V = 989.57 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4451 independent reflections
Radiation source: fine-focus sealed tube3019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.128, Tmax = 0.475k = 1213
7974 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
4451 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 1.29 e Å3
7 restraintsΔρmin = 1.04 e Å3
Crystal data top
(C7H11N2)[CoBr3(C7H9.1Br0.9N2)]γ = 106.933 (2)°
Mr = 615.02V = 989.57 (4) Å3
Triclinic, P1Z = 2
a = 8.3768 (2) ÅMo Kα radiation
b = 10.2622 (2) ŵ = 8.74 mm1
c = 12.4691 (3) ÅT = 150 K
α = 99.028 (2)°0.40 × 0.20 × 0.10 mm
β = 98.927 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3019 reflections with I > 2σ(I)
Tmin = 0.128, Tmax = 0.475Rint = 0.053
7974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0467 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.97Δρmax = 1.29 e Å3
4451 reflectionsΔρmin = 1.04 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.26488 (9)0.68358 (8)0.54136 (5)0.0375 (2)
Br20.64945 (8)0.59464 (7)0.69989 (5)0.03080 (18)
Br30.49021 (18)0.89737 (12)0.84679 (11)0.0315 (3)0.90
Br3'0.531 (2)0.8775 (13)0.8695 (11)0.068 (5)0.10
Br40.30233 (9)0.25573 (8)0.96716 (6)0.0350 (2)0.90
Co10.41492 (10)0.67837 (9)0.72097 (7)0.0271 (2)
N10.2478 (6)0.5344 (5)0.7796 (4)0.0280 (12)
N20.0965 (6)0.2792 (5)0.9321 (4)0.0276 (12)
N30.6361 (7)0.7246 (6)0.4462 (5)0.0414 (15)
H30.55800.67230.47510.050*
N41.0006 (7)0.9742 (6)0.3157 (4)0.0318 (12)
C10.2977 (8)0.4510 (6)0.8403 (5)0.0267 (13)
H10.41350.45400.84920.032*
C20.1936 (7)0.3618 (6)0.8904 (5)0.0226 (12)
H2'0.23680.30260.92930.027*0.10
C30.0191 (7)0.3572 (6)0.8846 (5)0.0248 (13)
C40.0282 (8)0.4425 (7)0.8152 (5)0.0320 (15)
H40.14380.44040.80150.038*
C50.0825 (8)0.5267 (7)0.7677 (6)0.0338 (15)
H50.04200.58300.72390.041*
C60.0620 (10)0.1971 (10)1.0125 (8)0.063 (3)
H6A0.04490.25031.06600.094*
H6B0.05160.11010.97370.094*
H6C0.15590.17561.05180.094*
C70.2699 (8)0.2868 (7)0.9146 (6)0.0377 (16)
H7A0.32130.25960.83490.057*
H7B0.26610.38240.94330.057*
H7C0.33850.22340.95370.057*
C80.7904 (10)0.7112 (7)0.4577 (5)0.0362 (16)
H80.81480.64410.49620.043*
C90.9138 (9)0.7919 (7)0.4155 (5)0.0320 (15)
H91.02360.78110.42540.038*
C100.8813 (7)0.8921 (6)0.3568 (4)0.0240 (13)
C110.7136 (9)0.9012 (7)0.3454 (5)0.0360 (16)
H110.68260.96550.30620.043*
C120.5987 (9)0.8172 (8)0.3908 (6)0.0405 (17)
H120.48710.82430.38310.049*
C130.9613 (11)1.0765 (8)0.2567 (6)0.051 (2)
H13A0.91621.13660.30380.076*
H13B0.87581.02820.18810.076*
H13C1.06541.13340.23840.076*
C141.1733 (9)0.9648 (8)0.3293 (6)0.048 (2)
H14A1.22140.97680.40840.073*
H14B1.24521.03800.29940.073*
H14C1.16890.87330.28930.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0327 (4)0.0541 (5)0.0345 (4)0.0205 (3)0.0109 (3)0.0188 (3)
Br20.0220 (3)0.0369 (4)0.0365 (4)0.0102 (3)0.0092 (3)0.0119 (3)
Br30.0321 (5)0.0292 (5)0.0328 (5)0.0089 (4)0.0070 (3)0.0071 (4)
Br3'0.076 (9)0.060 (7)0.057 (7)0.001 (5)0.034 (6)0.001 (5)
Br40.0253 (4)0.0469 (5)0.0403 (4)0.0144 (3)0.0087 (3)0.0237 (4)
Co10.0236 (5)0.0288 (5)0.0310 (5)0.0068 (4)0.0110 (3)0.0108 (4)
N10.025 (3)0.030 (3)0.031 (3)0.008 (2)0.009 (2)0.011 (2)
N20.022 (3)0.031 (3)0.029 (3)0.003 (2)0.010 (2)0.013 (2)
N30.033 (3)0.047 (4)0.034 (3)0.005 (3)0.011 (3)0.007 (3)
N40.026 (3)0.038 (3)0.026 (3)0.002 (2)0.003 (2)0.010 (2)
C10.017 (3)0.033 (4)0.028 (3)0.007 (3)0.007 (2)0.002 (3)
C20.023 (3)0.023 (3)0.025 (3)0.009 (2)0.008 (2)0.010 (2)
C30.020 (3)0.025 (3)0.024 (3)0.000 (2)0.006 (2)0.000 (2)
C40.023 (3)0.035 (4)0.039 (4)0.007 (3)0.004 (3)0.015 (3)
C50.024 (3)0.039 (4)0.046 (4)0.014 (3)0.011 (3)0.020 (3)
C60.036 (5)0.085 (7)0.083 (6)0.017 (5)0.021 (4)0.058 (5)
C70.024 (4)0.042 (4)0.049 (4)0.008 (3)0.017 (3)0.010 (3)
C80.055 (5)0.029 (4)0.023 (3)0.011 (3)0.007 (3)0.007 (3)
C90.036 (4)0.031 (4)0.027 (3)0.012 (3)0.001 (3)0.002 (3)
C100.027 (3)0.025 (3)0.015 (3)0.003 (3)0.002 (2)0.003 (2)
C110.033 (4)0.045 (4)0.030 (4)0.014 (3)0.002 (3)0.013 (3)
C120.023 (4)0.059 (5)0.033 (4)0.007 (3)0.002 (3)0.008 (3)
C130.060 (5)0.035 (4)0.050 (5)0.001 (4)0.008 (4)0.022 (4)
C140.031 (4)0.056 (5)0.045 (5)0.003 (4)0.013 (3)0.002 (4)
Geometric parameters (Å, º) top
Co1—Br12.4086 (11)C4—H40.9500
Co1—Br22.3958 (10)C5—H50.9500
Co1—Br32.3814 (13)C6—H6A0.9800
Co1—Br3'2.376 (9)C6—H6B0.9800
Br4—C21.888 (6)C6—H6C0.9800
Co1—N12.032 (5)C7—H7A0.9800
N1—C11.340 (8)C7—H7B0.9800
N1—C51.347 (8)C7—H7C0.9800
N2—C31.343 (7)C8—C91.356 (9)
N2—C61.454 (9)C8—H80.9500
N2—C71.461 (8)C9—C101.416 (8)
N3—C81.328 (9)C9—H90.9500
N3—C121.338 (9)C10—C111.421 (9)
N3—H30.8800C11—C121.353 (9)
N4—C101.333 (7)C11—H110.9500
N4—C131.456 (9)C12—H120.9500
N4—C141.463 (9)C13—H13A0.9800
C1—C21.368 (8)C13—H13B0.9800
C1—H10.9500C13—H13C0.9800
C2—C31.439 (8)C14—H14A0.9800
C2—H2'0.9500C14—H14B0.9800
C3—C41.415 (9)C14—H14C0.9800
C4—C51.350 (9)
N1—Co1—Br3'105.5 (5)N2—C6—H6A109.5
N1—Co1—Br3107.98 (15)N2—C6—H6B109.5
Br3'—Co1—Br312.5 (4)H6A—C6—H6B109.5
N1—Co1—Br2106.97 (14)N2—C6—H6C109.5
Br3'—Co1—Br2104.7 (4)H6A—C6—H6C109.5
Br3—Co1—Br2114.67 (5)H6B—C6—H6C109.5
N1—Co1—Br1105.94 (15)N2—C7—H7A109.5
Br3'—Co1—Br1123.1 (4)N2—C7—H7B109.5
Br3—Co1—Br1111.17 (5)H7A—C7—H7B109.5
Br2—Co1—Br1109.64 (4)N2—C7—H7C109.5
C1—N1—C5116.2 (5)H7A—C7—H7C109.5
C1—N1—Co1122.3 (4)H7B—C7—H7C109.5
C5—N1—Co1121.2 (4)N3—C8—C9121.1 (6)
C3—N2—C6125.9 (5)N3—C8—H8119.5
C3—N2—C7119.4 (5)C9—C8—H8119.5
C6—N2—C7114.3 (5)C8—C9—C10120.9 (6)
C8—N3—C12120.3 (6)C8—C9—H9119.5
C8—N3—H3119.9C10—C9—H9119.5
C12—N3—H3119.9N4—C10—C9122.3 (6)
C10—N4—C13120.2 (6)N4—C10—C11121.8 (6)
C10—N4—C14121.2 (6)C9—C10—C11115.9 (6)
C13—N4—C14118.6 (6)C12—C11—C10119.2 (6)
N1—C1—C2124.6 (5)C12—C11—H11120.4
N1—C1—H1117.7C10—C11—H11120.4
C2—C1—H1117.7N3—C12—C11122.6 (6)
C1—C2—C3120.5 (5)N3—C12—H12118.7
C1—C2—Br4114.0 (4)C11—C12—H12118.7
C3—C2—Br4125.5 (4)N4—C13—H13A109.5
C1—C2—H2'119.8N4—C13—H13B109.5
C3—C2—H2'119.8H13A—C13—H13B109.5
N2—C3—C4120.3 (5)N4—C13—H13C109.5
N2—C3—C2127.4 (6)H13A—C13—H13C109.5
C4—C3—C2112.2 (5)H13B—C13—H13C109.5
C5—C4—C3123.4 (6)N4—C14—H14A109.5
C5—C4—H4118.3N4—C14—H14B109.5
C3—C4—H4118.3H14A—C14—H14B109.5
N1—C5—C4122.9 (6)N4—C14—H14C109.5
N1—C5—H5118.6H14A—C14—H14C109.5
C4—C5—H5118.6H14B—C14—H14C109.5
Br3'—Co1—N1—C183.8 (6)Br4—C2—C3—C4176.4 (5)
Br3—Co1—N1—C196.6 (5)N2—C3—C4—C5177.9 (6)
Br2—Co1—N1—C127.3 (5)C2—C3—C4—C55.0 (9)
Br1—Co1—N1—C1144.2 (4)C1—N1—C5—C41.3 (9)
Br3'—Co1—N1—C590.1 (7)Co1—N1—C5—C4173.0 (5)
Br3—Co1—N1—C577.3 (5)C3—C4—C5—N11.8 (11)
Br2—Co1—N1—C5158.8 (5)C12—N3—C8—C91.0 (10)
Br1—Co1—N1—C541.9 (5)N3—C8—C9—C100.6 (10)
C5—N1—C1—C20.6 (9)C13—N4—C10—C9179.5 (6)
Co1—N1—C1—C2173.6 (5)C14—N4—C10—C90.0 (9)
N1—C1—C2—C33.0 (9)C13—N4—C10—C110.2 (9)
N1—C1—C2—Br4178.6 (5)C14—N4—C10—C11179.3 (6)
C6—N2—C3—C4174.2 (7)C8—C9—C10—N4179.1 (6)
C7—N2—C3—C42.0 (9)C8—C9—C10—C110.3 (9)
C6—N2—C3—C29.1 (10)N4—C10—C11—C12178.6 (6)
C7—N2—C3—C2178.7 (6)C9—C10—C11—C120.7 (9)
C1—C2—C3—N2177.7 (6)C8—N3—C12—C110.5 (10)
Br4—C2—C3—N20.5 (9)C10—C11—C12—N30.3 (11)
C1—C2—C3—C45.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br10.882.743.434 (6)137

Experimental details

Crystal data
Chemical formula(C7H11N2)[CoBr3(C7H9.1Br0.9N2)]
Mr615.02
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.3768 (2), 10.2622 (2), 12.4691 (3)
α, β, γ (°)99.028 (2), 98.927 (1), 106.933 (2)
V3)989.57 (4)
Z2
Radiation typeMo Kα
µ (mm1)8.74
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.128, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
7974, 4451, 3019
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 0.97
No. of reflections4451
No. of parameters221
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.04

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Co1—Br12.4086 (11)Co1—Br3'2.376 (9)
Co1—Br22.3958 (10)Co1—N12.032 (5)
Co1—Br32.3814 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br10.882.743.434 (6)137
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBogdanović, G. A., Medaković, V. B., Vojinović, L. S., Češljević, V., Leovać, V. M., Biré, A. S. & Zarić, S. D. (2001). Polyhedron, 20, 2231–2240.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, J. D., Emeleus, L. C., Harrison, D. & Nilsson, P. A. (2004). Inorg. Chim. Acta, 357, 3407–3412.  Web of Science CSD CrossRef CAS Google Scholar
First citationDivjaković, V., Leovac, V. M., Ribár, B., Argay, Gy. & Kálmán, A. (1982). Acta Cryst. B38, 1738–1741.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHahn, F. E., Scharn, D. & Lügger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMueller-Westerhoff, U., Rheingold, A. L. & Allen, M. B. (1996). Private communication to the CCDC (refcode: NACRAK). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumner, C. D. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124–6126.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m958-m959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds