metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethanol-κO)bis­­(pyridine-3-carb­aldehyde-κN thio­semicarbazone)bis­­(thio­cyanato-κN)iron(II)–pyridine-3-carbaldehyde thio­semicarbazone (1/2)

aCollege of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
*Correspondence e-mail: wang_shaomei@yahoo.cn

(Received 5 June 2009; accepted 23 June 2009; online 1 July 2009)

The crystal structure of the title FeII complex, [Fe(NCS)2(C7H8N4S)2(CH3CH2OH)2]·2C7H8N4S, based on the Schiff base ligand pyridine-3-carbaldehyde thio­semicarbazone (pct), results from the cocrystallization of an FeII coordination compound together with two of the pct ligands. The complex unit is mononuclear, with the central FeII ion located on a crystallographic centre of inversion and coordinated by four N atoms from two pct ligands and two thio­cyanate anions. The slightly distorted octa­hedral coordination is completed by two O atoms from ethanol mol­ecules. The crystal packing is accomplished inter­molecular N—H⋯S hydrogen bonds.

Related literature

For the structures of metal complexes of Schiff base ligands synthesized by condensation of pyridine-3-carbaldehyde and amino compounds, see: Brook et al. (2000[Brook, D.-J.-R., Fornell, S., Stevens, J.-E., Noll, B., Koch, T.-H. & Eisfeld, W. (2000). Inorg. Chem. 39, 562-567.]); Deng et al. (2007[Deng, J.-H., Guo, G.-Q. & Zhong, D.-C. (2007). Acta Cryst. E63, m2696-m2697.]); Garbelini et al. (2008[Garbelini, E.-R., Horner, M., Behm, M.-B., Evans, D.-J. & Nunes, F.-S. (2008). Z. Anorg. Allg. Chem. 634, 1801-1806.]); Kowol et al. (2007[Kowol, C.-R., Eichinger, R., Jakupec, M.-A., Galanski, M., Arion, V.-B. & Keppler, B.-K. (2007). J. Inorg. Biochem. 101, 1946-1957.]); Zhong et al. (2007[Zhong, D.-C., Guo, G.-Q. & Deng, J.-H. (2007). Acta Cryst. E63, m1747.]). For the corresponding Mn(II) complex of pyridine-3-carbaldehyde thio­semicarbazone, see: Li et al. (2006[Li, M.-X., Zhou, J., Wang, J.-P. & Wang, Z.-L. (2006). Chin. J. Struct. Chem. 25, 1275-1279.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(NCS)2(C7H8N4S)2(C2H6O)2]·2C7H8N4S

  • Mr = 985.08

  • Triclinic, [P \overline 1]

  • a = 8.916 (4) Å

  • b = 9.556 (5) Å

  • c = 14.538 (7) Å

  • α = 87.341 (8)°

  • β = 88.191 (8)°

  • γ = 69.604 (8)°

  • V = 1160 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 173 K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.819, Tmax = 0.871

  • 8300 measured reflections

  • 4037 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.134

  • S = 1.01

  • 4037 reflections

  • 282 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9B⋯S3i 0.88 2.67 3.533 (3) 165
N4—H4B⋯S1ii 0.88 2.52 3.373 (3) 164
N4—H4A⋯S2 0.88 2.80 3.360 (3) 123
N3—H3⋯S3iii 0.88 2.59 3.414 (3) 156
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y-1, -z+1; (iii) x-1, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several crystal structures of metal complexes based on Schiff base ligands being synthesized by condensation of pyridine-3-carbaldehyde and amino compounds have been previously reported (Brook et al., 2000; Deng et al., 2007; Garbelini et al., 2008; Kowol et al., 2007; Zhong et al., 2007). However, with regard to pyridine-3-carbaldehyde thiosemicarbazone (pct), only the corresponding Mn(II) complex has been documented (Li et al., 2006). Herein, we report the synthesis and crystal crystal structure of its FeII complex.

The structure of the title compound, (I), consists of discrete [Fe(C7H8N4S)2(SCN)2(C2H5OH)2] neutral units and uncoordinated pct molecules. The two semicarbazone ligands are planar, and each binds to FeII via the pyridine N atom. Therefore, pct acts as a monodentate ligand with the sulphur and nitrogen atoms of the semicarbazone subunit remaining uncoordinated. In addition to pct, the central FeII is coordinated by two SCN- anions and two C2H5OH molecules via the N and O atoms, respectively. (Fig. 1)

The molecules are held together by intermolecular hydrogen bonding interactions. The imino nitrogen N3 acts as a hydrogen donor site towards S3 of the uncoordinated pct molecule forming intermolecular N3—H3···S3 hydrogen bonds. S3 also accepts a hydrogen bond from N9 of a neighboring uncoordinated pct to form N9—H9B···S3 hydrogen bonds. In addition, the SCN- also is involved in the construction of the hydrogen bond network by establishing an interaction between the terminal S atoms accept and the hydrogen atom at N4 to form N4—H4A···S2 and N4—H4B···S1 hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the structures of metal complexes of Schiff base ligands synthesized by condensation of pyridine-3-carbaldehyde and amino compounds, see: Brook et al. (2000); Deng et al. (2007); Garbelini et al. (2008); Kowol et al. (2007); Zhong et al. (2007). For the corresponding Mn(II) complex of pyridine-3-carbaldehyde thiosemicarbazone, see: Li et al. (2006).

Experimental top

A mixture of 0.5 mmol FeCl2 × 6 H2O, 1.0 mmol of (NH4)SCN and 10 ml water-ethanol (1:2 v/v) was stirred for ca. 2 hrs at 343 K. Then 1.0 mmol pct in 10 ml water-ethanol mixture (1:2 v/v) was added. The mixture was further stirred for another 2 h, then filtered. The resultant filtrate was left to stand for slow evaporation at room temperature. Dark green single crystals of (I) suitable for X-ray structure analysis were obtained after a period of one week (yield 63%).

Refinement top

Hydrogen atoms attached to carbon atoms and nitrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C or N). The H atom attached to the hydroxy group of the ethanol ligand was located from difference density maps and was refined with distance restraints of O–H = 0.82 (1) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) × pct, symmetry code: (i) -x + 2, -y, -z + 1.
[Figure 2] Fig. 2. Three-dimensional supramolecular network constructed by hydrogen bonding interactions (dashed lines).
Bis(ethanol-κO)bis(pyridine-3-carbaldehyde-κN thiosemicarbazone-κN)bis(thiocyanato)iron(II)– pyridine-3-carbaldehyde thiosemicarbazone (1/2) top
Crystal data top
[Fe(NCS)2(C7H8N4S)2(C2H6O)2]·2C7H8N4SZ = 1
Mr = 985.08F(000) = 512
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.916 (4) ÅCell parameters from 3773 reflections
b = 9.556 (5) Åθ = 2.3–26.9°
c = 14.538 (7) ŵ = 0.65 mm1
α = 87.341 (8)°T = 173 K
β = 88.191 (8)°Block, dark green
γ = 69.604 (8)°0.32 × 0.26 × 0.22 mm
V = 1160 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube2953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.819, Tmax = 0.871k = 1111
8300 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.082P)2 + 0.3403P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
[Fe(NCS)2(C7H8N4S)2(C2H6O)2]·2C7H8N4Sγ = 69.604 (8)°
Mr = 985.08V = 1160 (1) Å3
Triclinic, P1Z = 1
a = 8.916 (4) ÅMo Kα radiation
b = 9.556 (5) ŵ = 0.65 mm1
c = 14.538 (7) ÅT = 173 K
α = 87.341 (8)°0.32 × 0.26 × 0.22 mm
β = 88.191 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2953 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.871Rint = 0.022
8300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
4037 reflectionsΔρmin = 0.24 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.00000.00000.0416 (2)
N10.2848 (3)0.1196 (3)0.09806 (16)0.0410 (6)
N20.1975 (3)0.0995 (3)0.33648 (15)0.0389 (6)
N30.1640 (3)0.1698 (3)0.41443 (16)0.0413 (6)
H30.06760.13820.43970.050*
N40.4186 (3)0.3344 (3)0.40767 (19)0.0659 (9)
H4A0.43160.28850.35570.079*
H4B0.49810.41120.42980.079*
N50.5606 (3)0.2022 (3)0.08302 (19)0.0536 (7)
C120.7900 (4)0.3134 (4)0.8792 (2)0.0604 (9)
H120.69440.33310.91500.072*
N70.8316 (3)0.5754 (3)0.64455 (16)0.0424 (6)
N80.8582 (3)0.6617 (3)0.57213 (17)0.0453 (6)
H80.95460.64030.54740.054*
N90.5924 (3)0.7961 (3)0.5738 (2)0.0652 (8)
H9A0.58140.73160.61630.078*
H9B0.50800.87110.55470.078*
O10.6741 (3)0.0634 (3)0.07601 (15)0.0541 (6)
S10.24701 (9)0.36692 (9)0.55347 (5)0.0500 (2)
S20.64184 (10)0.43494 (10)0.21504 (7)0.0632 (3)
S30.76674 (9)0.89666 (9)0.45668 (6)0.0525 (3)
C10.1770 (4)0.2554 (3)0.0754 (2)0.0457 (7)
H10.19620.30760.02180.055*
C20.0403 (4)0.3210 (3)0.1271 (2)0.0471 (7)
H20.03320.41650.10920.057*
C30.0117 (3)0.2462 (3)0.20499 (19)0.0416 (7)
H3A0.08150.29020.24180.050*
C40.1196 (3)0.1064 (3)0.22943 (18)0.0354 (6)
C50.2540 (3)0.0486 (3)0.17329 (19)0.0405 (7)
H50.32860.04730.18950.049*
C60.0921 (3)0.0255 (3)0.3116 (2)0.0409 (7)
H60.00390.06530.34680.049*
C70.2808 (3)0.2882 (3)0.4521 (2)0.0424 (7)
C80.5957 (3)0.2995 (3)0.1376 (2)0.0409 (7)
C90.6438 (4)0.1960 (4)0.1234 (2)0.0602 (9)
H9C0.55070.27510.09560.072*
H9D0.73750.22860.11550.072*
C100.6107 (5)0.1792 (5)0.2242 (3)0.0809 (13)
H10A0.51380.15350.23270.121*
H10B0.59520.27350.25380.121*
H10C0.70150.09970.25210.121*
C110.9244 (4)0.1953 (4)0.9025 (2)0.0577 (9)
H110.92010.13500.95570.069*
N61.0609 (3)0.1611 (3)0.85410 (18)0.0512 (7)
C131.0645 (4)0.2479 (3)0.7803 (2)0.0457 (7)
H131.16130.22440.74530.055*
C140.9344 (3)0.3714 (3)0.7514 (2)0.0404 (7)
C150.7945 (4)0.4035 (4)0.8032 (2)0.0533 (8)
H150.70260.48670.78650.064*
C160.9506 (3)0.4637 (3)0.6721 (2)0.0419 (7)
H161.05080.44060.64060.050*
C170.7345 (3)0.7807 (3)0.53873 (19)0.0417 (7)
H170.747 (3)0.006 (3)0.099 (2)0.067 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0384 (3)0.0424 (4)0.0381 (4)0.0086 (3)0.0034 (2)0.0106 (3)
N10.0387 (13)0.0410 (14)0.0383 (13)0.0092 (11)0.0062 (10)0.0063 (11)
N20.0372 (13)0.0431 (14)0.0345 (13)0.0130 (11)0.0060 (10)0.0047 (11)
N30.0344 (13)0.0445 (14)0.0391 (13)0.0085 (11)0.0080 (10)0.0102 (11)
N40.0418 (15)0.073 (2)0.0584 (18)0.0057 (14)0.0150 (13)0.0275 (15)
N50.0464 (16)0.0499 (16)0.0545 (16)0.0076 (12)0.0044 (12)0.0220 (14)
C120.0473 (19)0.075 (2)0.058 (2)0.0233 (18)0.0052 (16)0.0173 (18)
N70.0404 (14)0.0469 (15)0.0407 (14)0.0173 (12)0.0005 (11)0.0076 (11)
N80.0379 (13)0.0464 (15)0.0485 (15)0.0129 (11)0.0044 (11)0.0104 (12)
N90.0362 (15)0.071 (2)0.0734 (19)0.0046 (13)0.0092 (13)0.0306 (16)
O10.0492 (14)0.0503 (14)0.0551 (14)0.0065 (11)0.0113 (11)0.0028 (11)
S10.0399 (4)0.0577 (5)0.0429 (5)0.0078 (4)0.0058 (3)0.0164 (4)
S20.0511 (5)0.0507 (5)0.0736 (6)0.0045 (4)0.0042 (4)0.0327 (4)
S30.0410 (4)0.0548 (5)0.0520 (5)0.0077 (4)0.0059 (4)0.0184 (4)
C10.0456 (17)0.0447 (17)0.0418 (17)0.0112 (14)0.0055 (13)0.0094 (14)
C20.0442 (17)0.0364 (16)0.0482 (18)0.0007 (13)0.0010 (14)0.0061 (14)
C30.0349 (15)0.0430 (17)0.0404 (16)0.0061 (13)0.0061 (12)0.0018 (13)
C40.0319 (14)0.0388 (15)0.0347 (15)0.0115 (12)0.0024 (11)0.0008 (12)
C50.0370 (15)0.0333 (15)0.0431 (16)0.0036 (12)0.0037 (12)0.0090 (13)
C60.0350 (15)0.0429 (17)0.0403 (16)0.0090 (13)0.0086 (12)0.0013 (13)
C70.0378 (16)0.0458 (17)0.0401 (16)0.0114 (13)0.0033 (13)0.0044 (13)
C80.0312 (14)0.0402 (17)0.0454 (17)0.0063 (12)0.0083 (12)0.0018 (14)
C90.066 (2)0.062 (2)0.059 (2)0.0292 (19)0.0024 (17)0.0029 (18)
C100.103 (3)0.092 (3)0.063 (3)0.054 (3)0.015 (2)0.007 (2)
C110.060 (2)0.064 (2)0.053 (2)0.0279 (18)0.0082 (17)0.0184 (17)
N60.0501 (16)0.0493 (16)0.0521 (16)0.0155 (13)0.0111 (13)0.0132 (13)
C130.0415 (17)0.0480 (18)0.0475 (18)0.0159 (14)0.0004 (13)0.0023 (14)
C140.0389 (16)0.0409 (17)0.0428 (16)0.0161 (13)0.0033 (13)0.0042 (13)
C150.0388 (17)0.056 (2)0.060 (2)0.0117 (15)0.0008 (15)0.0154 (16)
C160.0389 (16)0.0433 (17)0.0438 (17)0.0157 (14)0.0018 (13)0.0029 (13)
C170.0406 (16)0.0466 (17)0.0365 (16)0.0139 (13)0.0010 (13)0.0025 (13)
Geometric parameters (Å, º) top
Fe1—N5i2.140 (3)S1—C71.690 (3)
Fe1—N52.140 (3)S2—C81.623 (3)
Fe1—O1i2.196 (2)S3—C171.677 (3)
Fe1—O12.196 (2)C1—C21.377 (4)
Fe1—N12.339 (2)C1—H10.9500
Fe1—N1i2.339 (2)C2—C31.375 (4)
N1—C51.332 (3)C2—H20.9500
N1—C11.352 (4)C3—C41.385 (4)
N2—C61.280 (4)C3—H3A0.9500
N2—N31.368 (3)C4—C51.388 (4)
N3—C71.350 (4)C4—C61.453 (4)
N3—H30.8800C5—H50.9500
N4—C71.312 (4)C6—H60.9500
N4—H4A0.8800C9—C101.498 (5)
N4—H4B0.8800C9—H9C0.9900
N5—C81.156 (4)C9—H9D0.9900
C12—C111.368 (5)C10—H10A0.9800
C12—C151.377 (4)C10—H10B0.9800
C12—H120.9500C10—H10C0.9800
N7—C161.274 (4)C11—N61.332 (4)
N7—N81.373 (3)C11—H110.9500
N8—C171.361 (4)N6—C131.332 (4)
N8—H80.8800C13—C141.395 (4)
N9—C171.312 (4)C13—H130.9500
N9—H9A0.8800C14—C151.383 (4)
N9—H9B0.8800C14—C161.453 (4)
O1—C91.408 (4)C15—H150.9500
O1—H170.816 (10)C16—H160.9500
N5i—Fe1—N5180.00 (14)C2—C3—H3A120.2
N5i—Fe1—O1i88.99 (10)C4—C3—H3A120.2
N5—Fe1—O1i91.01 (10)C3—C4—C5117.5 (2)
N5i—Fe1—O191.01 (10)C3—C4—C6120.6 (2)
N5—Fe1—O188.99 (10)C5—C4—C6121.9 (3)
O1i—Fe1—O1180.00 (14)N1—C5—C4123.9 (3)
N5i—Fe1—N188.53 (9)N1—C5—H5118.0
N5—Fe1—N191.47 (9)C4—C5—H5118.0
O1i—Fe1—N185.58 (9)N2—C6—C4119.9 (2)
O1—Fe1—N194.42 (9)N2—C6—H6120.0
N5i—Fe1—N1i91.47 (9)C4—C6—H6120.0
N5—Fe1—N1i88.53 (9)N4—C7—N3116.9 (3)
O1i—Fe1—N1i94.42 (9)N4—C7—S1123.1 (2)
O1—Fe1—N1i85.58 (9)N3—C7—S1119.9 (2)
N1—Fe1—N1i180.00 (12)N5—C8—S2179.0 (3)
C5—N1—C1117.4 (2)O1—C9—C10113.3 (3)
C5—N1—Fe1120.69 (18)O1—C9—H9C108.9
C1—N1—Fe1121.52 (18)C10—C9—H9C108.9
C6—N2—N3116.9 (2)O1—C9—H9D108.9
C7—N3—N2119.2 (2)C10—C9—H9D108.9
C7—N3—H3120.4H9C—C9—H9D107.7
N2—N3—H3120.4C9—C10—H10A109.5
C7—N4—H4A120.0C9—C10—H10B109.5
C7—N4—H4B120.0H10A—C10—H10B109.5
H4A—N4—H4B120.0C9—C10—H10C109.5
C8—N5—Fe1170.5 (3)H10A—C10—H10C109.5
C11—C12—C15119.4 (3)H10B—C10—H10C109.5
C11—C12—H12120.3N6—C11—C12122.9 (3)
C15—C12—H12120.3N6—C11—H11118.5
C16—N7—N8117.2 (2)C12—C11—H11118.5
C17—N8—N7119.6 (2)C11—N6—C13117.4 (3)
C17—N8—H8120.2N6—C13—C14123.9 (3)
N7—N8—H8120.2N6—C13—H13118.1
C17—N9—H9A120.0C14—C13—H13118.1
C17—N9—H9B120.0C15—C14—C13117.1 (3)
H9A—N9—H9B120.0C15—C14—C16122.6 (3)
C9—O1—Fe1126.7 (2)C13—C14—C16120.3 (3)
C9—O1—H17112 (3)C12—C15—C14119.2 (3)
Fe1—O1—H17115 (3)C12—C15—H15120.4
N1—C1—C2122.6 (3)C14—C15—H15120.4
N1—C1—H1118.7N7—C16—C14120.5 (3)
C2—C1—H1118.7N7—C16—H16119.7
C3—C2—C1119.1 (3)C14—C16—H16119.7
C3—C2—H2120.5N9—C17—N8116.1 (3)
C1—C2—H2120.5N9—C17—S3123.4 (2)
C2—C3—C4119.6 (3)N8—C17—S3120.5 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9B···S3ii0.882.673.533 (3)165
N4—H4B···S1iii0.882.523.373 (3)164
N4—H4A···S20.882.803.360 (3)123
N3—H3···S3iv0.882.593.414 (3)156
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y1, z+1; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(NCS)2(C7H8N4S)2(C2H6O)2]·2C7H8N4S
Mr985.08
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.916 (4), 9.556 (5), 14.538 (7)
α, β, γ (°)87.341 (8), 88.191 (8), 69.604 (8)
V3)1160 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.819, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
8300, 4037, 2953
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.134, 1.01
No. of reflections4037
No. of parameters282
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9B···S3i0.882.673.533 (3)165.2
N4—H4B···S1ii0.882.523.373 (3)163.8
N4—H4A···S20.882.803.360 (3)122.7
N3—H3···S3iii0.882.593.414 (3)156.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z+1; (iii) x1, y1, z.
 

References

First citationBrook, D.-J.-R., Fornell, S., Stevens, J.-E., Noll, B., Koch, T.-H. & Eisfeld, W. (2000). Inorg. Chem. 39, 562–567.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, J.-H., Guo, G.-Q. & Zhong, D.-C. (2007). Acta Cryst. E63, m2696–m2697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarbelini, E.-R., Horner, M., Behm, M.-B., Evans, D.-J. & Nunes, F.-S. (2008). Z. Anorg. Allg. Chem. 634, 1801–1806.  Web of Science CSD CrossRef CAS Google Scholar
First citationKowol, C.-R., Eichinger, R., Jakupec, M.-A., Galanski, M., Arion, V.-B. & Keppler, B.-K. (2007). J. Inorg. Biochem. 101, 1946–1957.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, M.-X., Zhou, J., Wang, J.-P. & Wang, Z.-L. (2006). Chin. J. Struct. Chem. 25, 1275–1279.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, D.-C., Guo, G.-Q. & Deng, J.-H. (2007). Acta Cryst. E63, m1747.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds