metal-organic compounds
catena-Poly[[diaquadibromidomanganese(III)]-μ-pyridine-2-carboxylato]
aSchool of Applied Chemical Engineering, the Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
The 2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer. The Mn3+ ions are bridged by anionic pyridine-2-carboxylate (pic) ligands, thereby forming a chain-like structure along the c axis, and are six-coordinated in a distorted octahedral environment by two O atoms of the two different carboxylate groups, two O atoms of two water molecules and two Br atoms. The complex displays intermolecular O—H⋯Br, O—H⋯N, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonding. There may also be intermolecular π–π interactions between adjacent pyridine rings, with a centroid–centroid distance of 3.993 (8) Å.
of the title compound, [MnBrRelated literature
For the synthesis and structure of [Mn(pic)3], see: Figgis et al. (1978); Yamaguchi & Sawyer (1985); Li et al. (2000). For the synthesis and structure of [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998); Barandika et al. (1999). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004). For the synthesis and structure of the anionic Mn(II)–pic polymer, {[MnBr2(pic)(H2O)]−}n, see: Kim et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680902844X/im2127sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680902844X/im2127Isup2.hkl
A solution of MnBr2 × 4 H2O (0.920 g, 3.208 mmol) and pyridine-2-carboxylic acid (0.200 g, 1.625 mmol) in H2O (10 ml) was refluxed for 3 h. The solvent was removed in vacuum, the residue was dissolved in MeOH/H2O (5 ml/5 ml) and filtered. After evaporation of the solvent, the residue was dried at 333 K, to give a pale pink powder (0.918 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.
H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water molecules were located from Fourier difference maps, but not refined [Uiso(H) = 1.5Ueq(O)].
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The repeat unit of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. | |
Fig. 2. View of the unit-cell contents and chain-like structure of the title compound. Hydrogen-bond interactions are drawn with dashed lines. |
[MnBr2(C6H4NO2)(H2O)2] | F(000) = 712 |
Mr = 372.89 | Dx = 2.321 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2889 reflections |
a = 10.290 (3) Å | θ = 2.6–28.2° |
b = 13.814 (4) Å | µ = 8.71 mm−1 |
c = 7.978 (3) Å | T = 223 K |
β = 109.810 (6)° | Plate, colorless |
V = 1066.9 (6) Å3 | 0.25 × 0.23 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 2168 independent reflections |
Radiation source: fine-focus sealed tube | 1510 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −12→11 |
Tmin = 0.133, Tmax = 0.418 | k = −17→17 |
6572 measured reflections | l = −5→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.248 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.135P)2 + 7.437P] where P = (Fo2 + 2Fc2)/3 |
2168 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 2.85 e Å−3 |
0 restraints | Δρmin = −1.46 e Å−3 |
[MnBr2(C6H4NO2)(H2O)2] | V = 1066.9 (6) Å3 |
Mr = 372.89 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.290 (3) Å | µ = 8.71 mm−1 |
b = 13.814 (4) Å | T = 223 K |
c = 7.978 (3) Å | 0.25 × 0.23 × 0.10 mm |
β = 109.810 (6)° |
Bruker SMART 1000 CCD diffractometer | 2168 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1510 reflections with I > 2σ(I) |
Tmin = 0.133, Tmax = 0.418 | Rint = 0.060 |
6572 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.248 | H-atom parameters constrained |
S = 1.14 | Δρmax = 2.85 e Å−3 |
2168 reflections | Δρmin = −1.46 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 1.11555 (19) | 0.12215 (13) | 0.3085 (2) | 0.0262 (5) | |
Br1 | 1.27174 (14) | 0.06169 (8) | 0.63672 (16) | 0.0287 (4) | |
Br2 | 1.29649 (14) | 0.06032 (9) | 0.17035 (17) | 0.0322 (4) | |
O1 | 0.9974 (9) | 0.1781 (7) | 0.0294 (12) | 0.037 (2) | |
O2 | 0.9538 (9) | 0.1716 (6) | 0.4164 (12) | 0.033 (2) | |
O3 | 1.0017 (9) | −0.0140 (6) | 0.2414 (12) | 0.039 (2) | |
H3A | 0.9255 | −0.0079 | 0.2534 | 0.059* | |
H3B | 1.0868 | −0.0659 | 0.2907 | 0.059* | |
O4 | 1.1968 (11) | 0.2673 (6) | 0.3608 (12) | 0.039 (2) | |
H4A | 1.1943 | 0.2857 | 0.4586 | 0.058* | |
H4B | 1.1898 | 0.3074 | 0.2510 | 0.058* | |
N1 | 0.7263 (11) | 0.3399 (7) | 0.0142 (14) | 0.031 (2) | |
C1 | 0.6010 (14) | 0.3448 (9) | 0.0408 (19) | 0.035 (3) | |
H1 | 0.5611 | 0.4054 | 0.0464 | 0.042* | |
C2 | 0.5345 (14) | 0.2620 (11) | 0.059 (2) | 0.041 (4) | |
H2 | 0.4469 | 0.2652 | 0.0714 | 0.049* | |
C3 | 0.5976 (14) | 0.1726 (12) | 0.0593 (18) | 0.042 (4) | |
H3 | 0.5538 | 0.1153 | 0.0750 | 0.050* | |
C4 | 0.7258 (12) | 0.1683 (9) | 0.0361 (16) | 0.027 (3) | |
H4 | 0.7690 | 0.1083 | 0.0367 | 0.032* | |
C5 | 0.7886 (12) | 0.2528 (8) | 0.0123 (14) | 0.025 (3) | |
C6 | 0.9277 (13) | 0.2547 (9) | −0.0176 (15) | 0.027 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0264 (10) | 0.0225 (9) | 0.0289 (10) | −0.0013 (7) | 0.0085 (8) | 0.0024 (7) |
Br1 | 0.0340 (8) | 0.0267 (7) | 0.0244 (7) | 0.0015 (5) | 0.0085 (5) | 0.0002 (4) |
Br2 | 0.0366 (8) | 0.0356 (8) | 0.0276 (7) | 0.0081 (5) | 0.0149 (6) | 0.0039 (5) |
O1 | 0.027 (5) | 0.048 (5) | 0.036 (5) | 0.013 (4) | 0.012 (4) | 0.016 (4) |
O2 | 0.029 (5) | 0.039 (5) | 0.038 (5) | 0.003 (4) | 0.024 (4) | −0.005 (4) |
O3 | 0.042 (6) | 0.026 (5) | 0.049 (6) | −0.015 (4) | 0.015 (5) | 0.003 (4) |
O4 | 0.058 (7) | 0.033 (5) | 0.030 (5) | −0.007 (4) | 0.020 (5) | 0.000 (4) |
N1 | 0.032 (6) | 0.031 (6) | 0.028 (6) | 0.006 (5) | 0.007 (5) | 0.003 (4) |
C1 | 0.028 (7) | 0.035 (7) | 0.053 (8) | 0.010 (5) | 0.030 (6) | −0.007 (6) |
C2 | 0.015 (6) | 0.061 (10) | 0.049 (9) | 0.005 (6) | 0.014 (6) | 0.002 (7) |
C3 | 0.024 (7) | 0.063 (9) | 0.037 (8) | −0.020 (7) | 0.008 (6) | −0.002 (7) |
C4 | 0.025 (6) | 0.022 (6) | 0.033 (7) | −0.004 (5) | 0.009 (5) | 0.001 (5) |
C5 | 0.020 (6) | 0.044 (7) | 0.004 (5) | −0.003 (5) | −0.003 (4) | 0.001 (4) |
C6 | 0.025 (6) | 0.040 (7) | 0.008 (5) | −0.003 (5) | −0.005 (4) | 0.007 (5) |
Mn1—O4 | 2.158 (9) | N1—C5 | 1.365 (15) |
Mn1—O3 | 2.184 (8) | N1—C1 | 1.378 (16) |
Mn1—O2 | 2.224 (8) | C1—C2 | 1.366 (19) |
Mn1—O1 | 2.281 (9) | C1—H1 | 0.94 |
Mn1—Br2 | 2.608 (2) | C2—C3 | 1.40 (2) |
Mn1—Br1 | 2.699 (2) | C2—H2 | 0.94 |
O1—C6 | 1.261 (14) | C3—C4 | 1.394 (18) |
O2—C6i | 1.217 (14) | C3—H3 | 0.94 |
O3—H3A | 0.83 | C4—C5 | 1.378 (16) |
O3—H3B | 1.10 | C4—H4 | 0.94 |
O4—H4A | 0.83 | C5—C6 | 1.529 (18) |
O4—H4B | 1.02 | C6—O2ii | 1.217 (14) |
O4—Mn1—O3 | 171.1 (4) | Mn1—O4—H4B | 115 |
O4—Mn1—O2 | 86.1 (4) | H4A—O4—H4B | 129 |
O3—Mn1—O2 | 87.1 (3) | C5—N1—C1 | 120.9 (11) |
O4—Mn1—O1 | 85.2 (4) | C2—C1—N1 | 120.3 (12) |
O3—Mn1—O1 | 89.3 (3) | C2—C1—H1 | 119.9 |
O2—Mn1—O1 | 93.0 (3) | N1—C1—H1 | 119.9 |
O4—Mn1—Br2 | 95.8 (3) | C1—C2—C3 | 119.5 (12) |
O3—Mn1—Br2 | 90.8 (3) | C1—C2—H2 | 120.3 |
O2—Mn1—Br2 | 177.4 (3) | C3—C2—H2 | 120.3 |
O1—Mn1—Br2 | 85.3 (2) | C4—C3—C2 | 119.9 (13) |
O4—Mn1—Br1 | 92.1 (3) | C4—C3—H3 | 120.1 |
O3—Mn1—Br1 | 93.7 (2) | C2—C3—H3 | 120.1 |
O2—Mn1—Br1 | 89.9 (2) | C5—C4—C3 | 119.5 (12) |
O1—Mn1—Br1 | 175.9 (2) | C5—C4—H4 | 120.3 |
Br2—Mn1—Br1 | 91.89 (7) | C3—C4—H4 | 120.3 |
C6—O1—Mn1 | 129.5 (8) | N1—C5—C4 | 120.0 (12) |
C6i—O2—Mn1 | 136.7 (9) | N1—C5—C6 | 117.1 (10) |
Mn1—O3—H3A | 110 | C4—C5—C6 | 122.9 (11) |
Mn1—O3—H3B | 100 | O2ii—C6—O1 | 130.0 (13) |
H3A—O3—H3B | 134 | O2ii—C6—C5 | 115.9 (11) |
Mn1—O4—H4A | 109 | O1—C6—C5 | 114.1 (10) |
O4—Mn1—O1—C6 | −47.0 (11) | C2—C3—C4—C5 | −0.3 (19) |
O3—Mn1—O1—C6 | 125.9 (11) | C1—N1—C5—C4 | 0.4 (17) |
O2—Mn1—O1—C6 | 38.8 (11) | C1—N1—C5—C6 | −179.8 (10) |
Br2—Mn1—O1—C6 | −143.2 (11) | C3—C4—C5—N1 | 1.0 (18) |
O4—Mn1—O2—C6i | −3.1 (12) | C3—C4—C5—C6 | −178.8 (10) |
O3—Mn1—O2—C6i | −177.3 (12) | Mn1—O1—C6—O2ii | 107.2 (14) |
O1—Mn1—O2—C6i | −88.1 (12) | Mn1—O1—C6—C5 | −73.5 (12) |
Br1—Mn1—O2—C6i | 89.0 (12) | N1—C5—C6—O2ii | −19.0 (15) |
C5—N1—C1—C2 | −2 (2) | C4—C5—C6—O2ii | 160.8 (12) |
N1—C1—C2—C3 | 3 (2) | N1—C5—C6—O1 | 161.6 (10) |
C1—C2—C3—C4 | −2 (2) | C4—C5—C6—O1 | −18.6 (15) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···Br1iii | 0.83 | 2.58 | 3.340 (9) | 154 |
O3—H3B···N1iv | 1.10 | 2.41 | 3.466 (14) | 162 |
O4—H4A···Br2i | 0.83 | 2.70 | 3.333 (9) | 135 |
O4—H4A···O1i | 0.83 | 2.33 | 2.908 (14) | 127 |
O4—H4B···Br1ii | 1.02 | 2.31 | 3.210 (9) | 147 |
C2—H2···O4v | 0.94 | 2.59 | 3.319 (18) | 134 |
C4—H4···Br2vi | 0.94 | 2.80 | 3.534 (12) | 135 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, −y, −z+1; (iv) −x+2, y−1/2, −z+1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [MnBr2(C6H4NO2)(H2O)2] |
Mr | 372.89 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 223 |
a, b, c (Å) | 10.290 (3), 13.814 (4), 7.978 (3) |
β (°) | 109.810 (6) |
V (Å3) | 1066.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.71 |
Crystal size (mm) | 0.25 × 0.23 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.133, 0.418 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6572, 2168, 1510 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.248, 1.14 |
No. of reflections | 2168 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.85, −1.46 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···Br1i | 0.83 | 2.58 | 3.340 (9) | 154 |
O3—H3B···N1ii | 1.10 | 2.41 | 3.466 (14) | 162 |
O4—H4A···Br2iii | 0.83 | 2.70 | 3.333 (9) | 135 |
O4—H4A···O1iii | 0.83 | 2.33 | 2.908 (14) | 127 |
O4—H4B···Br1iv | 1.02 | 2.31 | 3.210 (9) | 147 |
C2—H2···O4v | 0.94 | 2.59 | 3.319 (18) | 134 |
C4—H4···Br2vi | 0.94 | 2.80 | 3.534 (12) | 135 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x+2, −y, −z. |
Acknowledgements
This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).
References
Barandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311–1316. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Figgis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem. 31, 2545–2548. CSD CrossRef CAS Google Scholar
Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464. Web of Science CSD CrossRef Google Scholar
Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m621. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445–e446. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288–290. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971–976. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination polymers are attracting great attention because of their potential applications such as in catalysis, magnetism, molecular recognition and other fields (Huang et al., 2004).
The asymmetric unit of the title compound, [MnBr2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer (Fig. 1). Mn3+ ions are bridged by anionic pyridinecarboxylate (pic) ligands, thereby forming a one-dimensional zigzag chain-like structure along the c axis (Fig. 2). Mn3+ ions are six-coordinated in a distorted octahedral environment by two O atoms of the two different carboxylate groups, two O atoms of two water molecules and two Br atoms. Water molecules are trans with respect to each other, whereas Br atoms and O atoms of the carboxylate groups are cis with respect to each other, respectively. The complex displays intermolecular O—H···Br, O—H···N, O—H···O, C—H···O and C—H···Br hydrogen bonding (Table 1 and Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.993 (8) Å. The structure of the complex polymer is comparable with the structure of the anionic complex polymer, {[MnBr2(pic)(H2O)]-}n, in which the Mn2+ ions are linked to each other by pyridinecarboxylate bridges in a syn-anti mode (Kim et al., 2009).