metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m983-m984

catena-Poly[[di­aqua­di­bromidoman­ganese(III)]-μ-pyridine-2-carboxyl­ato]

aSchool of Applied Chemical Engineering, the Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 8 July 2009; accepted 18 July 2009; online 25 July 2009)

The asymmetric unit of the title compound, [MnBr2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer. The Mn3+ ions are bridged by anionic pyridine-2-carboxyl­ate (pic) ligands, thereby forming a chain-like structure along the c axis, and are six-coordinated in a distorted octa­hedral environment by two O atoms of the two different carboxyl­ate groups, two O atoms of two water mol­ecules and two Br atoms. The complex displays inter­molecular O—H⋯Br, O—H⋯N, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonding. There may also be inter­molecular ππ inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.993 (8) Å.

Related literature

For the synthesis and structure of [Mn(pic)3], see: Figgis et al. (1978[Figgis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem. 31, 2545-2548.]); Yamaguchi & Sawyer (1985[Yamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971-976.]); Li et al. (2000[Li, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445-e446.]). For the synthesis and structure of [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998[Okabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288-290.]); Barandika et al. (1999[Barandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311-1316.]). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004[Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454-1464.]). For the synthesis and structure of the anionic Mn(II)–pic polymer, {[MnBr2(pic)(H2O)]}n, see: Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m621.]).

[Scheme 1]

Experimental

Crystal data
  • [MnBr2(C6H4NO2)(H2O)2]

  • Mr = 372.89

  • Monoclinic, P 21 /c

  • a = 10.290 (3) Å

  • b = 13.814 (4) Å

  • c = 7.978 (3) Å

  • β = 109.810 (6)°

  • V = 1066.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.71 mm−1

  • T = 223 K

  • 0.25 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.133, Tmax = 0.418

  • 6572 measured reflections

  • 2168 independent reflections

  • 1510 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.248

  • S = 1.14

  • 2168 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 2.85 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Br1i 0.83 2.58 3.340 (9) 154
O3—H3B⋯N1ii 1.10 2.41 3.466 (14) 162
O4—H4A⋯Br2iii 0.83 2.70 3.333 (9) 135
O4—H4A⋯O1iii 0.83 2.33 2.908 (14) 127
O4—H4B⋯Br1iv 1.02 2.31 3.210 (9) 147
C2—H2⋯O4v 0.94 2.59 3.319 (18) 134
C4—H4⋯Br2vi 0.94 2.80 3.534 (12) 135
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coordination polymers are attracting great attention because of their potential applications such as in catalysis, magnetism, molecular recognition and other fields (Huang et al., 2004).

The asymmetric unit of the title compound, [MnBr2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer (Fig. 1). Mn3+ ions are bridged by anionic pyridinecarboxylate (pic) ligands, thereby forming a one-dimensional zigzag chain-like structure along the c axis (Fig. 2). Mn3+ ions are six-coordinated in a distorted octahedral environment by two O atoms of the two different carboxylate groups, two O atoms of two water molecules and two Br atoms. Water molecules are trans with respect to each other, whereas Br atoms and O atoms of the carboxylate groups are cis with respect to each other, respectively. The complex displays intermolecular O—H···Br, O—H···N, O—H···O, C—H···O and C—H···Br hydrogen bonding (Table 1 and Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.993 (8) Å. The structure of the complex polymer is comparable with the structure of the anionic complex polymer, {[MnBr2(pic)(H2O)]-}n, in which the Mn2+ ions are linked to each other by pyridinecarboxylate bridges in a syn-anti mode (Kim et al., 2009).

Related literature top

For the synthesis and structure of [Mn(pic)3], see: Figgis et al. (1978); Yamaguchi & Sawyer (1985); Li et al. (2000). For the synthesis and structure of [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998); Barandika et al. (1999). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004). For the synthesis and structure of the anionic Mn(II)–pic polymer, {[MnBr2(pic)(H2O)]-}n, see: Kim et al. (2009).

Experimental top

A solution of MnBr2 × 4 H2O (0.920 g, 3.208 mmol) and pyridine-2-carboxylic acid (0.200 g, 1.625 mmol) in H2O (10 ml) was refluxed for 3 h. The solvent was removed in vacuum, the residue was dissolved in MeOH/H2O (5 ml/5 ml) and filtered. After evaporation of the solvent, the residue was dried at 333 K, to give a pale pink powder (0.918 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water molecules were located from Fourier difference maps, but not refined [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The repeat unit of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents and chain-like structure of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
catena-Poly[[diaquadibromidomanganese(III)]-µ-pyridine-2-carboxylato] top
Crystal data top
[MnBr2(C6H4NO2)(H2O)2]F(000) = 712
Mr = 372.89Dx = 2.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2889 reflections
a = 10.290 (3) Åθ = 2.6–28.2°
b = 13.814 (4) ŵ = 8.71 mm1
c = 7.978 (3) ÅT = 223 K
β = 109.810 (6)°Plate, colorless
V = 1066.9 (6) Å30.25 × 0.23 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.133, Tmax = 0.418k = 1717
6572 measured reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.135P)2 + 7.437P]
where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 2.85 e Å3
0 restraintsΔρmin = 1.46 e Å3
Crystal data top
[MnBr2(C6H4NO2)(H2O)2]V = 1066.9 (6) Å3
Mr = 372.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.290 (3) ŵ = 8.71 mm1
b = 13.814 (4) ÅT = 223 K
c = 7.978 (3) Å0.25 × 0.23 × 0.10 mm
β = 109.810 (6)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1510 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.418Rint = 0.060
6572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.14Δρmax = 2.85 e Å3
2168 reflectionsΔρmin = 1.46 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.11555 (19)0.12215 (13)0.3085 (2)0.0262 (5)
Br11.27174 (14)0.06169 (8)0.63672 (16)0.0287 (4)
Br21.29649 (14)0.06032 (9)0.17035 (17)0.0322 (4)
O10.9974 (9)0.1781 (7)0.0294 (12)0.037 (2)
O20.9538 (9)0.1716 (6)0.4164 (12)0.033 (2)
O31.0017 (9)0.0140 (6)0.2414 (12)0.039 (2)
H3A0.92550.00790.25340.059*
H3B1.08680.06590.29070.059*
O41.1968 (11)0.2673 (6)0.3608 (12)0.039 (2)
H4A1.19430.28570.45860.058*
H4B1.18980.30740.25100.058*
N10.7263 (11)0.3399 (7)0.0142 (14)0.031 (2)
C10.6010 (14)0.3448 (9)0.0408 (19)0.035 (3)
H10.56110.40540.04640.042*
C20.5345 (14)0.2620 (11)0.059 (2)0.041 (4)
H20.44690.26520.07140.049*
C30.5976 (14)0.1726 (12)0.0593 (18)0.042 (4)
H30.55380.11530.07500.050*
C40.7258 (12)0.1683 (9)0.0361 (16)0.027 (3)
H40.76900.10830.03670.032*
C50.7886 (12)0.2528 (8)0.0123 (14)0.025 (3)
C60.9277 (13)0.2547 (9)0.0176 (15)0.027 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0264 (10)0.0225 (9)0.0289 (10)0.0013 (7)0.0085 (8)0.0024 (7)
Br10.0340 (8)0.0267 (7)0.0244 (7)0.0015 (5)0.0085 (5)0.0002 (4)
Br20.0366 (8)0.0356 (8)0.0276 (7)0.0081 (5)0.0149 (6)0.0039 (5)
O10.027 (5)0.048 (5)0.036 (5)0.013 (4)0.012 (4)0.016 (4)
O20.029 (5)0.039 (5)0.038 (5)0.003 (4)0.024 (4)0.005 (4)
O30.042 (6)0.026 (5)0.049 (6)0.015 (4)0.015 (5)0.003 (4)
O40.058 (7)0.033 (5)0.030 (5)0.007 (4)0.020 (5)0.000 (4)
N10.032 (6)0.031 (6)0.028 (6)0.006 (5)0.007 (5)0.003 (4)
C10.028 (7)0.035 (7)0.053 (8)0.010 (5)0.030 (6)0.007 (6)
C20.015 (6)0.061 (10)0.049 (9)0.005 (6)0.014 (6)0.002 (7)
C30.024 (7)0.063 (9)0.037 (8)0.020 (7)0.008 (6)0.002 (7)
C40.025 (6)0.022 (6)0.033 (7)0.004 (5)0.009 (5)0.001 (5)
C50.020 (6)0.044 (7)0.004 (5)0.003 (5)0.003 (4)0.001 (4)
C60.025 (6)0.040 (7)0.008 (5)0.003 (5)0.005 (4)0.007 (5)
Geometric parameters (Å, º) top
Mn1—O42.158 (9)N1—C51.365 (15)
Mn1—O32.184 (8)N1—C11.378 (16)
Mn1—O22.224 (8)C1—C21.366 (19)
Mn1—O12.281 (9)C1—H10.94
Mn1—Br22.608 (2)C2—C31.40 (2)
Mn1—Br12.699 (2)C2—H20.94
O1—C61.261 (14)C3—C41.394 (18)
O2—C6i1.217 (14)C3—H30.94
O3—H3A0.83C4—C51.378 (16)
O3—H3B1.10C4—H40.94
O4—H4A0.83C5—C61.529 (18)
O4—H4B1.02C6—O2ii1.217 (14)
O4—Mn1—O3171.1 (4)Mn1—O4—H4B115
O4—Mn1—O286.1 (4)H4A—O4—H4B129
O3—Mn1—O287.1 (3)C5—N1—C1120.9 (11)
O4—Mn1—O185.2 (4)C2—C1—N1120.3 (12)
O3—Mn1—O189.3 (3)C2—C1—H1119.9
O2—Mn1—O193.0 (3)N1—C1—H1119.9
O4—Mn1—Br295.8 (3)C1—C2—C3119.5 (12)
O3—Mn1—Br290.8 (3)C1—C2—H2120.3
O2—Mn1—Br2177.4 (3)C3—C2—H2120.3
O1—Mn1—Br285.3 (2)C4—C3—C2119.9 (13)
O4—Mn1—Br192.1 (3)C4—C3—H3120.1
O3—Mn1—Br193.7 (2)C2—C3—H3120.1
O2—Mn1—Br189.9 (2)C5—C4—C3119.5 (12)
O1—Mn1—Br1175.9 (2)C5—C4—H4120.3
Br2—Mn1—Br191.89 (7)C3—C4—H4120.3
C6—O1—Mn1129.5 (8)N1—C5—C4120.0 (12)
C6i—O2—Mn1136.7 (9)N1—C5—C6117.1 (10)
Mn1—O3—H3A110C4—C5—C6122.9 (11)
Mn1—O3—H3B100O2ii—C6—O1130.0 (13)
H3A—O3—H3B134O2ii—C6—C5115.9 (11)
Mn1—O4—H4A109O1—C6—C5114.1 (10)
O4—Mn1—O1—C647.0 (11)C2—C3—C4—C50.3 (19)
O3—Mn1—O1—C6125.9 (11)C1—N1—C5—C40.4 (17)
O2—Mn1—O1—C638.8 (11)C1—N1—C5—C6179.8 (10)
Br2—Mn1—O1—C6143.2 (11)C3—C4—C5—N11.0 (18)
O4—Mn1—O2—C6i3.1 (12)C3—C4—C5—C6178.8 (10)
O3—Mn1—O2—C6i177.3 (12)Mn1—O1—C6—O2ii107.2 (14)
O1—Mn1—O2—C6i88.1 (12)Mn1—O1—C6—C573.5 (12)
Br1—Mn1—O2—C6i89.0 (12)N1—C5—C6—O2ii19.0 (15)
C5—N1—C1—C22 (2)C4—C5—C6—O2ii160.8 (12)
N1—C1—C2—C33 (2)N1—C5—C6—O1161.6 (10)
C1—C2—C3—C42 (2)C4—C5—C6—O118.6 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Br1iii0.832.583.340 (9)154
O3—H3B···N1iv1.102.413.466 (14)162
O4—H4A···Br2i0.832.703.333 (9)135
O4—H4A···O1i0.832.332.908 (14)127
O4—H4B···Br1ii1.022.313.210 (9)147
C2—H2···O4v0.942.593.319 (18)134
C4—H4···Br2vi0.942.803.534 (12)135
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x+2, y1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x+2, y, z.

Experimental details

Crystal data
Chemical formula[MnBr2(C6H4NO2)(H2O)2]
Mr372.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.290 (3), 13.814 (4), 7.978 (3)
β (°) 109.810 (6)
V3)1066.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)8.71
Crystal size (mm)0.25 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.133, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
6572, 2168, 1510
Rint0.060
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.248, 1.14
No. of reflections2168
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.85, 1.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Br1i0.832.583.340 (9)154
O3—H3B···N1ii1.102.413.466 (14)162
O4—H4A···Br2iii0.832.703.333 (9)135
O4—H4A···O1iii0.832.332.908 (14)127
O4—H4B···Br1iv1.022.313.210 (9)147
C2—H2···O4v0.942.593.319 (18)134
C4—H4···Br2vi0.942.803.534 (12)135
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x1, y+1/2, z1/2; (vi) x+2, y, z.
 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBarandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFiggis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem. 31, 2545–2548.  CSD CrossRef CAS Google Scholar
First citationHuang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464.  Web of Science CSD CrossRef Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445–e446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288–290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971–976.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m983-m984
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds