organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-1-(phenyl­sulfin­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 July 2009; accepted 23 July 2009; online 29 July 2009)

In the title compound, C24H15BrO2S, the sulfinyl O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane through the naphthofuran fragment. The phenyl ring is nearly perpendicular to the plane of the tricyclic naphthofuran system [81.77 (6)°] and is tilted slightly towards it. The 4-bromo­phenyl ring is rotated out of the naphthofuran plane by a dihedral angle of 31.12 (4)°. In the crystal structure, non-classical inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds are observed. The crystal structure also exhibits aromatic ππ inter­actions between the furan ring and the central benzene ring of the adjacent naphthofuran system [centroid–centroid distance = 3.768 (3) Å]. In addition, inter­molecular C—Br⋯π inter­actions [3.866 (2) Å] between the Br atom and the phenyl ring of the phenyl­sulfinyl substituent are present.

Related literature

For the crystal structures of similar 2-phenyl-1-(phenyl­sulfin­yl)-naphtho[2,1-b]furan derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812.]). For the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15BrO2S

  • Mr = 447.33

  • Triclinic, [P \overline 1]

  • a = 9.2412 (5) Å

  • b = 10.3266 (6) Å

  • c = 10.7606 (6) Å

  • α = 71.424 (1)°

  • β = 77.933 (1)°

  • γ = 79.287 (1)°

  • V = 943.96 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 273 K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.392, Tmax = 0.724

  • 8200 measured reflections

  • 4057 independent reflections

  • 3482 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.06

  • 4057 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.57 3.482 (2) 167
C20—H20⋯Brii 0.93 2.98 3.760 (2) 143
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing naphthofuran moieties have attracted considerable interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan analogues, as 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009a) and 7-bromo-2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009b). Here we report the crystal structure of the title compound (I) (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.020 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle in (I) formed by the plane of the naphthofuran system and the plane of the 4-bromophenyl ring measures to 31.12 (4) Å. The respective dihedral angle with the phenyl ring (C19-C24) shows a value of 81.77 (6) Å with respect to the naphthofuran plane. The crystal packing (Fig. 2) is realized by non-classical intermolecular C–H···O and C–H···Br hydrogen bonds (Table 1). In the crystal structure (Fig. 3) additionally aromatic ππ interactions between the furan ring and the central benzene ring of adjacent molecules are observed. The Cg1···Cg2iv distance is 3.768 (3) Å (Cg1 and Cg2 are the centroides of the C1/C2/C11/O1/C12 furan and the C2/C3/C8/C9/C10/C11 benzene rings, respectively). The molecular packing (Fig. 3) also exhibits intermolecular C–Br···π interactions between the Br atom and the phenyl ring of the phenylsulfinyl substituent, with a C16–Br···Cg3v (3.866 (2) Å ; Cg3 is the centroid of C19-C24 benzene ring).

Related literature top

For the crystal structures of similar 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan derivatives, see: Choi et al. (2009a,b). For the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005).

Experimental top

3-Chloroperoxybenzoic acid (77%, 157 mg, 0.7 mmol) was added in small portions to a stirred solution of 2-(4-bromophenyl)-1-(phenylsulfanyl)naphtho[2,1-b]furan (313 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid (yield 78%, m.p. 447-448 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The C–H···O and C–H···Br interactions (dotted lines) in the title compound. [Symmetry code: (i) x - 1, y, z; (ii) - x + 2, - y + 1, - z + 1; (iii) x + 1, y, z.]
[Figure 3] Fig. 3. The ππ and C–Br···π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (iv) - x + 1, - y + 2, - z + 1; (v) x + 1, y, z - 1; (vi) x-1, y, z + 1.]
2-(4-Bromophenyl)-1-(phenylsulfinyl)naphtho[2,1-b]furan top
Crystal data top
C24H15BrO2SZ = 2
Mr = 447.33F(000) = 452
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2412 (5) ÅCell parameters from 4680 reflections
b = 10.3266 (6) Åθ = 2.3–27.5°
c = 10.7606 (6) ŵ = 2.31 mm1
α = 71.424 (1)°T = 273 K
β = 77.933 (1)°Block, colorless
γ = 79.287 (1)°0.50 × 0.20 × 0.15 mm
V = 943.96 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
4057 independent reflections
Radiation source: fine-focus sealed tube3482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1312
Tmin = 0.392, Tmax = 0.724l = 1313
8200 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4094P]
where P = (Fo2 + 2Fc2)/3
4057 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H15BrO2Sγ = 79.287 (1)°
Mr = 447.33V = 943.96 (9) Å3
Triclinic, P1Z = 2
a = 9.2412 (5) ÅMo Kα radiation
b = 10.3266 (6) ŵ = 2.31 mm1
c = 10.7606 (6) ÅT = 273 K
α = 71.424 (1)°0.50 × 0.20 × 0.15 mm
β = 77.933 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3482 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 0.724Rint = 0.014
8200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
4057 reflectionsΔρmin = 0.33 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.42799 (2)0.59150 (2)0.28002 (2)0.04232 (8)
S0.86347 (5)0.80600 (5)0.75366 (4)0.02428 (10)
O10.67887 (14)0.76607 (13)0.47329 (12)0.0288 (3)
O20.81883 (15)0.94123 (13)0.78284 (13)0.0311 (3)
C10.73992 (19)0.78681 (18)0.65760 (17)0.0242 (4)
C20.57973 (19)0.82284 (18)0.66420 (17)0.0246 (4)
C30.45921 (19)0.86444 (18)0.75651 (18)0.0256 (4)
C40.4754 (2)0.88062 (19)0.87792 (19)0.0290 (4)
H40.57000.86560.90090.035*
C50.3534 (2)0.9183 (2)0.9630 (2)0.0328 (4)
H50.36590.92841.04280.039*
C60.2097 (2)0.9413 (2)0.9292 (2)0.0350 (4)
H60.12750.96600.98730.042*
C70.1900 (2)0.92773 (19)0.8119 (2)0.0342 (4)
H70.09430.94340.79120.041*
C80.3132 (2)0.89007 (18)0.7210 (2)0.0293 (4)
C90.2929 (2)0.8767 (2)0.5981 (2)0.0334 (4)
H90.19720.89550.57680.040*
C100.4087 (2)0.83736 (19)0.5108 (2)0.0330 (4)
H100.39460.82960.43060.040*
C110.5507 (2)0.80912 (18)0.54840 (18)0.0277 (4)
C120.7932 (2)0.75313 (18)0.54145 (18)0.0262 (4)
C130.9424 (2)0.70872 (18)0.47959 (17)0.0259 (4)
C140.9808 (2)0.74611 (19)0.34116 (18)0.0306 (4)
H140.90930.79580.28860.037*
C151.1239 (2)0.7101 (2)0.28158 (19)0.0333 (4)
H151.14880.73560.18950.040*
C161.2295 (2)0.6357 (2)0.36050 (19)0.0298 (4)
C171.1936 (2)0.5935 (2)0.49761 (19)0.0306 (4)
H171.26510.54190.54940.037*
C181.0501 (2)0.62905 (19)0.55646 (18)0.0287 (4)
H181.02480.59960.64840.034*
C190.81395 (18)0.67454 (18)0.90586 (17)0.0234 (3)
C240.8333 (2)0.6950 (2)1.0216 (2)0.0345 (4)
H240.86390.77661.01980.041*
C200.7690 (2)0.5535 (2)0.90810 (19)0.0350 (4)
H200.75600.54030.82980.042*
C210.7434 (3)0.4515 (2)1.0279 (2)0.0379 (5)
H210.71240.37001.03000.045*
C220.7637 (2)0.4706 (2)1.1437 (2)0.0342 (4)
H220.74850.40151.22360.041*
C230.8065 (3)0.5924 (2)1.1409 (2)0.0408 (5)
H230.81760.60611.21960.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03273 (12)0.05681 (15)0.04193 (13)0.00596 (9)0.00269 (9)0.02602 (11)
S0.0218 (2)0.0270 (2)0.0262 (2)0.00630 (17)0.00274 (16)0.00963 (17)
O10.0327 (7)0.0293 (7)0.0271 (6)0.0064 (5)0.0082 (5)0.0083 (5)
O20.0335 (7)0.0263 (7)0.0368 (7)0.0081 (5)0.0050 (6)0.0117 (6)
C10.0242 (9)0.0234 (9)0.0258 (9)0.0049 (7)0.0049 (7)0.0065 (7)
C20.0244 (9)0.0211 (8)0.0283 (9)0.0059 (7)0.0063 (7)0.0043 (7)
C30.0225 (8)0.0191 (8)0.0342 (10)0.0052 (7)0.0054 (7)0.0044 (7)
C40.0222 (9)0.0275 (9)0.0378 (10)0.0026 (7)0.0042 (8)0.0109 (8)
C50.0281 (9)0.0309 (10)0.0409 (11)0.0041 (8)0.0012 (8)0.0150 (8)
C60.0225 (9)0.0276 (10)0.0526 (12)0.0018 (7)0.0015 (8)0.0139 (9)
C70.0215 (9)0.0225 (9)0.0569 (13)0.0032 (7)0.0091 (8)0.0071 (9)
C80.0259 (9)0.0189 (9)0.0420 (11)0.0062 (7)0.0083 (8)0.0034 (8)
C90.0288 (10)0.0266 (10)0.0453 (12)0.0078 (8)0.0166 (9)0.0018 (8)
C100.0368 (11)0.0280 (10)0.0375 (11)0.0101 (8)0.0167 (9)0.0039 (8)
C110.0305 (9)0.0226 (9)0.0301 (9)0.0071 (7)0.0073 (7)0.0044 (7)
C120.0313 (9)0.0216 (9)0.0254 (9)0.0062 (7)0.0073 (7)0.0031 (7)
C130.0325 (9)0.0214 (9)0.0252 (9)0.0063 (7)0.0029 (7)0.0080 (7)
C140.0394 (10)0.0257 (9)0.0261 (9)0.0035 (8)0.0073 (8)0.0056 (7)
C150.0432 (11)0.0319 (10)0.0232 (9)0.0078 (8)0.0005 (8)0.0072 (8)
C160.0285 (9)0.0320 (10)0.0327 (10)0.0077 (8)0.0009 (8)0.0163 (8)
C170.0340 (10)0.0297 (10)0.0305 (10)0.0007 (8)0.0083 (8)0.0120 (8)
C180.0368 (10)0.0275 (9)0.0227 (9)0.0050 (8)0.0042 (8)0.0085 (7)
C190.0194 (8)0.0249 (9)0.0265 (9)0.0010 (6)0.0045 (7)0.0087 (7)
C240.0450 (11)0.0311 (10)0.0329 (10)0.0109 (9)0.0146 (9)0.0085 (8)
C200.0500 (12)0.0320 (10)0.0270 (10)0.0104 (9)0.0055 (9)0.0117 (8)
C210.0525 (13)0.0269 (10)0.0360 (11)0.0115 (9)0.0038 (9)0.0100 (8)
C220.0388 (11)0.0305 (10)0.0289 (10)0.0020 (8)0.0056 (8)0.0038 (8)
C230.0583 (14)0.0400 (12)0.0282 (10)0.0096 (10)0.0168 (10)0.0075 (9)
Geometric parameters (Å, º) top
Br—C161.8973 (19)C10—H100.9300
S—O21.4933 (13)C12—C131.460 (3)
S—C11.7662 (18)C13—C141.399 (3)
S—C191.7987 (18)C13—C181.400 (3)
O1—C121.371 (2)C14—C151.382 (3)
O1—C111.373 (2)C14—H140.9300
C1—C121.372 (2)C15—C161.384 (3)
C1—C21.450 (2)C15—H150.9300
C2—C111.382 (3)C16—C171.384 (3)
C2—C31.429 (2)C17—C181.382 (3)
C3—C41.410 (3)C17—H170.9300
C3—C81.434 (3)C18—H180.9300
C4—C51.375 (3)C19—C241.380 (3)
C4—H40.9300C19—C201.381 (3)
C5—C61.408 (3)C24—C231.390 (3)
C5—H50.9300C24—H240.9300
C6—C71.365 (3)C20—C211.388 (3)
C6—H60.9300C20—H200.9300
C7—C81.419 (3)C21—C221.376 (3)
C7—H70.9300C21—H210.9300
C8—C91.426 (3)C22—C231.376 (3)
C9—C101.361 (3)C22—H220.9300
C9—H90.9300C23—H230.9300
C10—C111.405 (3)
O2—S—C1109.42 (8)O1—C12—C13116.43 (15)
O2—S—C19107.01 (8)C1—C12—C13133.04 (17)
C1—S—C1999.88 (8)C14—C13—C18118.53 (17)
C12—O1—C11106.49 (14)C14—C13—C12120.29 (17)
C12—C1—C2106.91 (15)C18—C13—C12121.17 (16)
C12—C1—S120.79 (14)C15—C14—C13120.79 (18)
C2—C1—S131.42 (14)C15—C14—H14119.6
C11—C2—C3119.50 (16)C13—C14—H14119.6
C11—C2—C1104.65 (16)C14—C15—C16119.25 (17)
C3—C2—C1135.85 (17)C14—C15—H15120.4
C4—C3—C2124.40 (16)C16—C15—H15120.4
C4—C3—C8119.09 (17)C17—C16—C15121.29 (18)
C2—C3—C8116.51 (17)C17—C16—Br119.08 (15)
C5—C4—C3121.00 (17)C15—C16—Br119.63 (14)
C5—C4—H4119.5C18—C17—C16119.12 (18)
C3—C4—H4119.5C18—C17—H17120.4
C4—C5—C6119.96 (19)C16—C17—H17120.4
C4—C5—H5120.0C17—C18—C13120.93 (17)
C6—C5—H5120.0C17—C18—H18119.5
C7—C6—C5120.60 (18)C13—C18—H18119.5
C7—C6—H6119.7C24—C19—C20120.56 (17)
C5—C6—H6119.7C24—C19—S116.87 (14)
C6—C7—C8121.14 (18)C20—C19—S122.40 (14)
C6—C7—H7119.4C19—C24—C23119.21 (18)
C8—C7—H7119.4C19—C24—H24120.4
C7—C8—C9121.21 (18)C23—C24—H24120.4
C7—C8—C3118.20 (18)C19—C20—C21119.64 (18)
C9—C8—C3120.59 (18)C19—C20—H20120.2
C10—C9—C8122.32 (18)C21—C20—H20120.2
C10—C9—H9118.8C22—C21—C20120.15 (19)
C8—C9—H9118.8C22—C21—H21119.9
C9—C10—C11116.50 (18)C20—C21—H21119.9
C9—C10—H10121.7C23—C22—C21119.87 (19)
C11—C10—H10121.7C23—C22—H22120.1
O1—C11—C2111.42 (16)C21—C22—H22120.1
O1—C11—C10124.05 (17)C22—C23—C24120.55 (19)
C2—C11—C10124.53 (18)C22—C23—H23119.7
O1—C12—C1110.53 (16)C24—C23—H23119.7
O2—S—C1—C12128.31 (15)C9—C10—C11—C22.1 (3)
C19—S—C1—C12119.58 (15)C11—O1—C12—C10.08 (19)
O2—S—C1—C239.51 (19)C11—O1—C12—C13179.65 (15)
C19—S—C1—C272.60 (18)C2—C1—C12—O10.4 (2)
C12—C1—C2—C110.79 (19)S—C1—C12—O1170.03 (12)
S—C1—C2—C11168.29 (14)C2—C1—C12—C13179.88 (18)
C12—C1—C2—C3178.88 (19)S—C1—C12—C139.6 (3)
S—C1—C2—C312.0 (3)O1—C12—C13—C1432.4 (2)
C11—C2—C3—C4179.44 (17)C1—C12—C13—C14147.3 (2)
C1—C2—C3—C40.2 (3)O1—C12—C13—C18148.06 (17)
C11—C2—C3—C80.2 (2)C1—C12—C13—C1832.3 (3)
C1—C2—C3—C8179.86 (19)C18—C13—C14—C152.7 (3)
C2—C3—C4—C5178.61 (17)C12—C13—C14—C15176.95 (17)
C8—C3—C4—C51.0 (3)C13—C14—C15—C160.3 (3)
C3—C4—C5—C60.1 (3)C14—C15—C16—C171.8 (3)
C4—C5—C6—C70.5 (3)C14—C15—C16—Br177.73 (15)
C5—C6—C7—C80.0 (3)C15—C16—C17—C181.4 (3)
C6—C7—C8—C9179.59 (18)Br—C16—C17—C18178.17 (14)
C6—C7—C8—C31.0 (3)C16—C17—C18—C131.1 (3)
C4—C3—C8—C71.5 (3)C14—C13—C18—C173.1 (3)
C2—C3—C8—C7178.21 (16)C12—C13—C18—C17176.49 (17)
C4—C3—C8—C9179.06 (17)O2—S—C19—C2437.46 (17)
C2—C3—C8—C91.2 (3)C1—S—C19—C24151.42 (15)
C7—C8—C9—C10178.31 (18)O2—S—C19—C20147.24 (16)
C3—C8—C9—C101.1 (3)C1—S—C19—C2033.28 (18)
C8—C9—C10—C110.5 (3)C20—C19—C24—C230.2 (3)
C12—O1—C11—C20.62 (19)S—C19—C24—C23175.62 (17)
C12—O1—C11—C10178.53 (17)C24—C19—C20—C210.1 (3)
C3—C2—C11—O1178.87 (15)S—C19—C20—C21175.04 (16)
C1—C2—C11—O10.9 (2)C19—C20—C21—C220.5 (3)
C3—C2—C11—C102.0 (3)C20—C21—C22—C231.4 (3)
C1—C2—C11—C10178.27 (17)C21—C22—C23—C241.7 (3)
C9—C10—C11—O1178.85 (16)C19—C24—C23—C221.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.573.482 (2)167
C20—H20···Brii0.932.983.760 (2)143
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H15BrO2S
Mr447.33
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.2412 (5), 10.3266 (6), 10.7606 (6)
α, β, γ (°)71.424 (1), 77.933 (1), 79.287 (1)
V3)943.96 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.392, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
8200, 4057, 3482
Rint0.014
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.06
No. of reflections4057
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.573.482 (2)166.9
C20—H20···Brii0.932.983.760 (2)142.8
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819–8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds