organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1781-o1782

2-Acetamido-2-de­­oxy-3-O-β-D-galacto­pyranosyl-D-glucose dihydrate

aDepartment of Biomaterials Science, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan, bNational Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kanondai, Tsukuba, Ibaraki 305-8642, Japan, and cInstrumentaion Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: awadam@mail.ecc.u-tokyo.ac.jp

(Received 16 June 2009; accepted 27 June 2009; online 4 July 2009)

In the title compound, C14H25NO11·2H2O, the primary hydroxyl group connected to the anomeric C atom of the N-acetyl-β-D-glucopyran­ose residue exhibits positional disorder, with occupancy factors for the α and β anomers of 0.77 and 0.23, respectively. The two torsion angles (Φ and Ψ) and the bridge angle (τ) that describe conformation of the glycosidic linkage between the galactopyran­ose and glucopyran­ose rings are Φ = −81.6 (3)°, Ψ = 118.1 (2)° and τ = 115.2 (2)°. Two water mol­ecules stabilize the mol­ecular packing by forming hydrogen bonds with the saccharide residues.

Related literature

For the synthesis of the title compound, see: Kitaoka et al. (2005[Kitaoka, M., Tian, J. & Nishimoto, M. (2005). Appl. Environ. Microbiol. 71, 3158-3162.]); Nishimoto & Kitaoka (2007a[Nishimoto, M. & Kitaoka, M. (2007a). Appl. Environ. Microbiol. 73, 6444-6449.],b[Nishimoto, M. & Kitaoka, M. (2007b). Biosci. Biotechnol. Biochem. 71, 2101-2104.]). For the conformation of saccharide rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H25NO11·2H2O

  • Mr = 419.38

  • Orthorhombic, P 21 21 21

  • a = 8.284 (1) Å

  • b = 12.841 (1) Å

  • c = 17.503 (1) Å

  • V = 1861.9 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.80000 Å

  • μ = 0.13 mm−1

  • T = 95 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • ADSC Quantum 210r diffractometer

  • Absorption correction: none

  • 25787 measured reflections

  • 2153 independent reflections

  • 2046 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.06

  • 2153 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond and torsion angles (°)

C1—O1—C9 115.2 (2)
O5—C1—O1—C9 −81.6 (3)
C2—C1—O1—C9 159.0 (2)
C1—O1—C9—C10 118.0 (2)
C1—O1—C9—C8 −123.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Wi 0.88 2.05 2.923 (3) 169
O2—H2O⋯O12ii 0.85 1.80 2.642 (3) 170
O3—H3O⋯O2W 0.85 1.86 2.702 (3) 169
O4—H4O⋯O13ii 0.93 1.95 2.803 (3) 150
O6—H6O⋯O1Wiii 0.85 1.79 2.624 (3) 168
O10—H10O⋯O6iv 0.96 1.81 2.705 (3) 154
O1W—H11W⋯O10iv 0.85 1.85 2.696 (3) 175
O12—H12O⋯O13v 0.85 1.96 2.784 (3) 162
O1W—H12W⋯O4 0.87 1.90 2.759 (3) 173
O2W—H21W⋯O11vi 0.90 1.94 2.772 (3) 154
O2W—H22W⋯O6vii 0.85 1.91 2.757 (3) 171
O71—H71O⋯O2i 0.86 1.87 2.683 (3) 159
O72—H72O⋯O1Wv 0.84 2.04 2.545 (9) 119
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x, y+1, z; (vii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: UGUI (Structural Biology Research Center, 2005[Structural Biology Research Center (2005). Unified Graphical User Interface (UGUI). Structural Biology Research Center, Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp.307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is widely accepted that oligosaccharides other than lactose in human milk (human milk oligosaccharides, HMOs) play a key role in the growth of Bifidobacteria in the gut. Bifidobacteria, Gram-positive anaerobes, are considered to be beneficial for human health. Recently, a unique metabolic pathway specific for lacto-N-biose I (Gal-β13GlcNAc, LNB) was found using Bifidobacteria (Kitaoka et al., 2005; Nishimoto & Kitaoka, 2007a). LNB is one of the basic core disaccharides of HMOs and is suggested to be a bifidus factor.

The molecular structure of compound (I) is shown in Fig. 1. There are two water molecules per LNB molecule in the crystal lattice. The primary hydroxyl group connected to the anomeric carbon atom of the GlcNAc residue exhibits disorder, with occupancy factors of O71 (α anomer) and O72 (β anomer) of 0.77 and 0.23, respectively.

The Gal ring is close to the ideal 4C1 chair conformation with ring puckering parameters (Cremer & Pople, 1975) of Q = 0.556 (3) Å, Θ = 7.1 (3)° and Φ = 353 (2)° for the atom sequence O5—C1—C2—C3—C4—C5. The other GlcNAc ring is also close to the ideal chair conformation, with Q = 0.618 (3) Å, Θ = 3.8 (3)°, and Φ = 198 (4)° for the atom sequence O11—C7—C8—C9—C10—C11.

The conformation about the linkage between the Gal and GlcNAc rings is characterized by the torsion angles of Φ (O5—C1—O1—C9) and Ψ (C1—O1—C9—C10), and the bridge angle τ (C1—O1—C9). The values obtained in this study are Φ = -81.6 (3)°, Ψ = 118.1 (2)° and τ = 115.2 (2)° (Table 1).

The conformation of the hydroxymethyl group is defined by two sets of torsion angle: χ and χ'. The values for the Gal ring were χ (O5—C5—C6—O6) = 79.5 (3)° and χ' (C4—C5—C6—O6) = -157.9 (2)°, indicating values close to the gt conformation. The values for the GlcNAc ring are χ (O11—C11—C12—O12) = -64.1 (3)° and χ' (C10—C11—C12—O12) = 57.9 (3)°, indicating the gg conformation.

Both saccharide rings lie approximately parallel to the bc plane and the intermolecular hydrogen bonds were only along the a-axis (Table 2). Two water molecules stabilize the molecular packing by forming hydrogen bonds with sugar molecules in three dimensions.

Related literature top

For the synthesis of the title compound, see: Kitaoka et al. (2005); Nishimoto & Kitaoka (2007a,b). For the conformation of saccharide rings, see: Cremer & Pople (1975).

Experimental top

Compound (I) was synthesized from sucrose and GlcNAc by the concurrent action of four enzymes: sucrose phosphorylase, UDP-glucose-hexose-1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and lacto-N-biose phosphorylase (Nishimoto & Kitaoka, 2007b). Single crystals suitable for X-ray analysis were obtained by slow diffusion of ethanol into an aqueous solution.

Refinement top

The anomalous scattering signal of (I) is too weak to predict the accurate absolute structure. Therefore, the merging of Friedel pair data was performed before the final refinement. The hydroxyl H atoms in the saccharides and water molecules, except for H72O, were located in a difference Fourier map. The H72O atom was positioned using the HFIX 83 instruction in the SHELXL97 software package, with O—H = 0.84 Å. These hydroxyl H atoms were subsequently refined as a riding model, with Uiso(H) = 1.2Ueq(O). The methine, methylene, methyl and amide H atoms were positioned using the HFIX 13, HFIX 23, HFIX 137 and HFIX 43 instructions, with C—H = 1.00, 0.99, 0.98 and 0.88 Å, respectively. These C- and N-bound H atoms were also refined as a riding model, with Uiso(H) = 1.2Ueq(C) for the methine, methylene and amide H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: UGUI (Structural Biology Research Center, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot and atomic numbering scheme of compound (I). The ellipsoids are drawn at the 50% probability level, and the H atoms are shown as small spheres with arbitrary radii. Broken lines indicate hydrogen bonds. The minor conformer of the disordered part has been omitted for clarity.
2-Acetamido-2-deoxy-3-O-β-D-galactopyranosyl-D- glucose dihydrate top
Crystal data top
C14H25NO11·2H2OF(000) = 896
Mr = 419.38Dx = 1.496 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.80000 Å
Hall symbol: P 2ac 2abCell parameters from 25787 reflections
a = 8.284 (1) Åθ = 2.2–30.0°
b = 12.841 (1) ŵ = 0.13 mm1
c = 17.503 (1) ÅT = 95 K
V = 1861.9 (3) Å3Block, colorless
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
ADSC Quantum 210r
diffractometer
2046 reflections with I > 2σ(I)
Radiation source: Photon Facrory NW12ARint = 0.047
Silicon monochromatorθmax = 30.0°, θmin = 2.2°
Detector resolution: 9.7466 pixels mm-1h = 1010
ω scansk = 1616
25787 measured reflectionsl = 2121
2153 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap&geom
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.7215P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2153 reflectionsΔρmax = 0.27 e Å3
264 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.084 (6)
Crystal data top
C14H25NO11·2H2OV = 1861.9 (3) Å3
Mr = 419.38Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.80000 Å
a = 8.284 (1) ŵ = 0.13 mm1
b = 12.841 (1) ÅT = 95 K
c = 17.503 (1) Å0.10 × 0.10 × 0.10 mm
Data collection top
ADSC Quantum 210r
diffractometer
2046 reflections with I > 2σ(I)
25787 measured reflectionsRint = 0.047
2153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2153 reflectionsΔρmin = 0.31 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7021 (3)0.32502 (19)0.34879 (14)0.0205 (5)
H10.82270.32140.34710.025*
C20.6435 (3)0.4253 (2)0.31127 (15)0.0211 (5)
H20.52340.42320.30590.025*
C30.6921 (3)0.52070 (19)0.35853 (15)0.0215 (5)
H30.81130.53100.35350.026*
C40.6518 (3)0.5082 (2)0.44263 (16)0.0226 (6)
H40.70710.56460.47210.027*
C50.7119 (4)0.4031 (2)0.47122 (15)0.0235 (6)
H50.83230.40170.46710.028*
C60.6658 (4)0.3832 (2)0.55375 (16)0.0279 (6)
H610.67220.44940.58260.033*
H620.55260.35850.55590.033*
O10.6358 (2)0.24111 (13)0.30922 (11)0.0217 (4)
O20.7150 (2)0.43673 (14)0.23805 (11)0.0241 (4)
H2O0.66480.40550.20240.029*
O30.6135 (3)0.61167 (14)0.33229 (11)0.0261 (5)
H3O0.67090.64200.29880.031*
O40.4818 (3)0.51573 (15)0.45519 (11)0.0268 (5)
H4O0.45080.57880.43310.032*
O50.6475 (2)0.31996 (13)0.42597 (10)0.0219 (4)
O60.7678 (3)0.30802 (14)0.58916 (11)0.0266 (5)
H6O0.74910.24620.57420.032*
C70.8597 (3)0.00264 (19)0.25298 (15)0.0220 (5)
H710.89190.03270.20250.026*0.77
H720.95330.01200.28740.026*0.23
C80.7699 (3)0.10082 (19)0.24040 (15)0.0213 (5)
H80.67070.08700.20940.026*
C90.7191 (3)0.14403 (19)0.31837 (15)0.0206 (5)
H90.81710.15490.35080.025*
C100.6100 (3)0.06275 (19)0.35568 (15)0.0213 (5)
H100.51510.04910.32180.026*
C110.7058 (3)0.03748 (19)0.36589 (15)0.0218 (5)
H110.80470.02110.39640.026*
C120.6157 (4)0.1242 (2)0.40603 (16)0.0248 (6)
H1210.68550.18660.40920.030*
H1220.58880.10220.45870.030*
O710.9959 (3)0.01943 (18)0.29538 (14)0.0217 (5)0.77
H71O1.07520.02180.28600.026*0.77
O720.9226 (12)0.0517 (7)0.1856 (5)0.031 (2)0.23
H72O0.88610.02160.14670.037*0.23
O100.5548 (3)0.09459 (15)0.42885 (11)0.0251 (5)
H10O0.47290.14680.42410.030*
O110.7561 (2)0.07395 (14)0.29198 (11)0.0229 (4)
O120.4722 (3)0.1495 (2)0.36648 (17)0.0485 (7)
H12O0.43250.20910.37600.058*
N10.8734 (3)0.17181 (16)0.19831 (13)0.0214 (5)
H1N0.96210.19420.22050.026*
C130.8410 (3)0.20474 (19)0.12798 (16)0.0220 (6)
O130.7167 (3)0.18034 (14)0.09211 (11)0.0258 (4)
C140.9628 (4)0.2771 (2)0.09275 (17)0.0312 (7)
H1411.05190.28840.12870.047*
H1420.91120.34380.08100.047*
H1431.00480.24610.04560.047*
O1W0.2143 (3)0.39008 (16)0.43738 (13)0.0370 (6)
H11W0.16880.39740.48060.044*
H12W0.29500.43300.43980.044*
O2W0.8087 (2)0.72473 (14)0.24058 (11)0.0247 (4)
H21W0.76300.78670.24980.030*
H22W0.79010.70830.19420.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (13)0.0155 (11)0.0234 (12)0.0008 (11)0.0008 (11)0.0003 (9)
C20.0226 (13)0.0174 (12)0.0234 (12)0.0030 (10)0.0052 (11)0.0017 (10)
C30.0216 (12)0.0146 (11)0.0284 (13)0.0008 (10)0.0015 (11)0.0010 (10)
C40.0235 (13)0.0161 (11)0.0282 (13)0.0002 (11)0.0020 (11)0.0000 (10)
C50.0270 (13)0.0168 (11)0.0266 (13)0.0004 (11)0.0002 (11)0.0000 (10)
C60.0334 (16)0.0232 (13)0.0271 (14)0.0061 (12)0.0018 (12)0.0011 (11)
O10.0240 (10)0.0130 (8)0.0280 (9)0.0006 (8)0.0020 (8)0.0001 (7)
O20.0269 (10)0.0221 (9)0.0233 (9)0.0041 (8)0.0020 (8)0.0008 (7)
O30.0302 (11)0.0151 (8)0.0329 (10)0.0033 (8)0.0029 (9)0.0043 (7)
O40.0272 (10)0.0196 (9)0.0336 (10)0.0058 (8)0.0065 (9)0.0026 (8)
O50.0286 (10)0.0147 (8)0.0225 (9)0.0002 (8)0.0013 (8)0.0005 (7)
O60.0311 (11)0.0193 (9)0.0293 (10)0.0021 (8)0.0036 (8)0.0022 (8)
C70.0244 (13)0.0165 (11)0.0251 (12)0.0016 (11)0.0001 (11)0.0006 (10)
C80.0255 (13)0.0146 (11)0.0237 (12)0.0025 (11)0.0002 (11)0.0029 (10)
C90.0212 (12)0.0138 (11)0.0268 (12)0.0010 (11)0.0009 (11)0.0000 (10)
C100.0254 (14)0.0160 (11)0.0225 (12)0.0003 (11)0.0018 (11)0.0005 (10)
C110.0252 (13)0.0162 (11)0.0241 (12)0.0004 (11)0.0004 (11)0.0004 (10)
C120.0257 (14)0.0182 (12)0.0304 (13)0.0001 (11)0.0022 (12)0.0039 (11)
O710.0196 (11)0.0169 (11)0.0284 (12)0.0029 (10)0.0022 (10)0.0015 (9)
O720.039 (5)0.024 (4)0.028 (4)0.008 (4)0.011 (4)0.001 (4)
O100.0307 (11)0.0200 (9)0.0246 (9)0.0042 (8)0.0048 (8)0.0018 (8)
O110.0289 (10)0.0153 (8)0.0246 (9)0.0021 (8)0.0027 (8)0.0012 (7)
O120.0368 (13)0.0384 (12)0.0703 (17)0.0204 (11)0.0240 (13)0.0300 (12)
N10.0208 (10)0.0168 (10)0.0268 (11)0.0020 (9)0.0010 (9)0.0007 (9)
C130.0235 (13)0.0148 (11)0.0278 (12)0.0005 (10)0.0005 (11)0.0002 (10)
O130.0256 (10)0.0232 (9)0.0286 (10)0.0046 (8)0.0015 (8)0.0015 (8)
C140.0330 (16)0.0308 (14)0.0298 (14)0.0107 (13)0.0024 (12)0.0058 (12)
O1W0.0484 (14)0.0261 (10)0.0365 (12)0.0066 (11)0.0090 (11)0.0014 (9)
O2W0.0292 (10)0.0169 (8)0.0280 (9)0.0031 (8)0.0015 (9)0.0020 (7)
Geometric parameters (Å, º) top
C1—O11.394 (3)C8—N11.452 (3)
C1—O51.426 (3)C8—C91.532 (4)
C1—C21.525 (3)C8—H81.0000
C1—H11.0000C9—C101.528 (4)
C2—O21.419 (3)C9—H91.0000
C2—C31.532 (3)C10—O101.420 (3)
C2—H21.0000C10—C111.523 (3)
C3—O31.414 (3)C10—H101.0000
C3—C41.518 (4)C11—O111.437 (3)
C3—H31.0000C11—C121.514 (4)
C4—O41.429 (3)C11—H111.0000
C4—C51.523 (3)C12—O121.413 (4)
C4—H41.0000C12—H1210.9900
C5—O51.432 (3)C12—H1220.9900
C5—C61.516 (4)O71—H71O0.8594
C5—H51.0000O72—H72O0.8400
C6—O61.425 (3)O10—H10O0.9571
C6—H610.9900O12—H12O0.8497
C6—H620.9900N1—C131.329 (4)
O1—C91.434 (3)N1—H1N0.8800
O2—H2O0.8500C13—O131.246 (4)
O3—H3O0.8500C13—C141.504 (4)
O4—H4O0.9338C14—H1410.9800
O6—H6O0.8499C14—H1420.9800
C7—O711.380 (4)C14—H1430.9800
C7—O111.428 (3)O1W—H11W0.8500
C7—O721.435 (9)O1W—H12W0.8676
C7—C81.538 (3)O2W—H21W0.8963
C7—H711.0000O2W—H22W0.8523
C7—H721.0000
O1—C1—O5108.1 (2)O72—C7—H72107.2
O1—C1—C2108.3 (2)C8—C7—H72107.4
O5—C1—C2110.2 (2)N1—C8—C9112.7 (2)
O1—C1—H1110.1N1—C8—C7109.2 (2)
O5—C1—H1110.1C9—C8—C7108.5 (2)
C2—C1—H1110.1N1—C8—H8108.8
O2—C2—C1110.1 (2)C9—C8—H8108.8
O2—C2—C3107.2 (2)C7—C8—H8108.8
C1—C2—C3111.0 (2)O1—C9—C10110.9 (2)
O2—C2—H2109.5O1—C9—C8110.3 (2)
C1—C2—H2109.5C10—C9—C8107.2 (2)
C3—C2—H2109.5O1—C9—H9109.5
O3—C3—C4107.5 (2)C10—C9—H9109.5
O3—C3—C2111.3 (2)C8—C9—H9109.5
C4—C3—C2112.4 (2)O10—C10—C11107.8 (2)
O3—C3—H3108.5O10—C10—C9112.3 (2)
C4—C3—H3108.5C11—C10—C9108.6 (2)
C2—C3—H3108.5O10—C10—H10109.4
O4—C4—C3111.0 (2)C11—C10—H10109.4
O4—C4—C5109.4 (2)C9—C10—H10109.4
C3—C4—C5109.9 (2)O11—C11—C12108.7 (2)
O4—C4—H4108.8O11—C11—C10108.7 (2)
C3—C4—H4108.8C12—C11—C10114.8 (2)
C5—C4—H4108.8O11—C11—H11108.2
O5—C5—C6107.9 (2)C12—C11—H11108.2
O5—C5—C4110.9 (2)C10—C11—H11108.2
C6—C5—C4112.3 (2)O12—C12—C11110.9 (2)
O5—C5—H5108.5O12—C12—H121109.5
C6—C5—H5108.5C11—C12—H121109.5
C4—C5—H5108.5O12—C12—H122109.5
O6—C6—C5112.3 (2)C11—C12—H122109.5
O6—C6—H61109.2H121—C12—H122108.0
C5—C6—H61109.2C7—O71—H71O113.3
O6—C6—H62109.2C7—O72—H72O109.5
C5—C6—H62109.2C10—O10—H10O110.6
H61—C6—H62107.9C7—O11—C11113.28 (19)
C1—O1—C9115.2 (2)C12—O12—H12O115.9
C2—O2—H2O114.2C13—N1—C8123.4 (2)
C3—O3—H3O110.2C13—N1—H1N118.3
C4—O4—H4O105.5C8—N1—H1N118.3
C1—O5—C5111.8 (2)O13—C13—N1123.6 (3)
C6—O6—H6O113.0O13—C13—C14120.2 (2)
O71—C7—O11111.5 (2)N1—C13—C14116.2 (2)
O11—C7—O72109.2 (4)C13—C14—H141109.5
O71—C7—C8107.1 (2)C13—C14—H142109.5
O11—C7—C8109.4 (2)H141—C14—H142109.5
O72—C7—C8115.9 (4)C13—C14—H143109.5
O71—C7—H71109.6H141—C14—H143109.5
O11—C7—H71109.6H142—C14—H143109.5
C8—C7—H71109.6H11W—O1W—H12W103.1
O11—C7—H72107.4H21W—O2W—H22W108.4
O1—C1—C2—O269.5 (3)O11—C7—C8—C958.8 (3)
O5—C1—C2—O2172.4 (2)O72—C7—C8—C9177.2 (5)
O1—C1—C2—C3171.9 (2)C1—O1—C9—C10118.0 (2)
O5—C1—C2—C353.9 (3)C1—O1—C9—C8123.3 (2)
O2—C2—C3—O370.7 (3)N1—C8—C9—O158.5 (3)
C1—C2—C3—O3169.0 (2)C7—C8—C9—O1179.6 (2)
O2—C2—C3—C4168.6 (2)N1—C8—C9—C10179.3 (2)
C1—C2—C3—C448.3 (3)C7—C8—C9—C1059.5 (3)
O3—C3—C4—O450.3 (3)O1—C9—C10—O1059.4 (3)
C2—C3—C4—O472.6 (3)C8—C9—C10—O10179.9 (2)
O3—C3—C4—C5171.5 (2)O1—C9—C10—C11178.5 (2)
C2—C3—C4—C548.6 (3)C8—C9—C10—C1161.0 (3)
O4—C4—C5—O566.6 (3)O10—C10—C11—O11177.2 (2)
C3—C4—C5—O555.5 (3)C9—C10—C11—O1160.9 (3)
O4—C4—C5—C654.2 (3)O10—C10—C11—C1255.2 (3)
C3—C4—C5—C6176.4 (2)C9—C10—C11—C12177.1 (2)
O5—C5—C6—O679.5 (3)O11—C11—C12—O1264.1 (3)
C4—C5—C6—O6157.9 (2)C10—C11—C12—O1257.9 (3)
O5—C1—O1—C981.6 (3)O71—C7—O11—C1157.6 (3)
C2—C1—O1—C9159.0 (2)O72—C7—O11—C11171.4 (5)
O1—C1—O5—C5179.3 (2)C8—C7—O11—C1160.7 (3)
C2—C1—O5—C562.6 (3)C12—C11—O11—C7172.7 (2)
C6—C5—O5—C1172.6 (2)C10—C11—O11—C761.8 (3)
C4—C5—O5—C164.0 (3)C9—C8—N1—C13125.0 (3)
O71—C7—C8—N161.1 (3)C7—C8—N1—C13114.2 (3)
O11—C7—C8—N1178.0 (2)C8—N1—C13—O132.1 (4)
O72—C7—C8—N153.9 (5)C8—N1—C13—C14179.2 (2)
O71—C7—C8—C962.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.882.052.923 (3)169
O2—H2O···O12ii0.851.802.642 (3)170
O3—H3O···O2W0.851.862.702 (3)169
O4—H4O···O13ii0.931.952.803 (3)150
O6—H6O···O1Wiii0.851.792.624 (3)168
O10—H10O···O6iv0.961.812.705 (3)154
O1W—H11W···O10iv0.851.852.696 (3)175
O12—H12O···O13v0.851.962.784 (3)162
O1W—H12W···O40.871.902.759 (3)173
O2W—H21W···O11vi0.901.942.772 (3)154
O2W—H22W···O6vii0.851.912.757 (3)171
O71—H71O···O2i0.861.872.683 (3)159
O72—H72O···O1Wv0.842.042.545 (9)119
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y+1, z; (vii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H25NO11·2H2O
Mr419.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)95
a, b, c (Å)8.284 (1), 12.841 (1), 17.503 (1)
V3)1861.9 (3)
Z4
Radiation typeSynchrotron, λ = 0.80000 Å
µ (mm1)0.13
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerADSC Quantum 210r
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25787, 2153, 2046
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.06
No. of reflections2153
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: UGUI (Structural Biology Research Center, 2005), HKL-2000 (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Selected bond and torsion angles (º) top
C1—O1—C9115.2 (2)
O5—C1—O1—C981.6 (3)C1—O1—C9—C10118.0 (2)
C2—C1—O1—C9159.0 (2)C1—O1—C9—C8123.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.882.052.923 (3)169
O2—H2O···O12ii0.851.802.642 (3)170
O3—H3O···O2W0.851.862.702 (3)169
O4—H4O···O13ii0.931.952.803 (3)150
O6—H6O···O1Wiii0.851.792.624 (3)168
O10—H10O···O6iv0.961.812.705 (3)154
O1W—H11W···O10iv0.851.852.696 (3)175
O12—H12O···O13v0.851.962.784 (3)162
O1W—H12W···O40.871.902.759 (3)173
O2W—H21W···O11vi0.901.942.772 (3)154
O2W—H22W···O6vii0.851.912.757 (3)171
O71—H71O···O2i0.861.872.683 (3)159
O72—H72O···O1Wv0.842.042.545 (9)119
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y+1, z; (vii) x+3/2, y+1, z1/2.
 

Acknowledgements

This study was supported in part by a grant from the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKitaoka, M., Tian, J. & Nishimoto, M. (2005). Appl. Environ. Microbiol. 71, 3158–3162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishimoto, M. & Kitaoka, M. (2007a). Appl. Environ. Microbiol. 73, 6444–6449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishimoto, M. & Kitaoka, M. (2007b). Biosci. Biotechnol. Biochem. 71, 2101–2104.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp.307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStructural Biology Research Center (2005). Unified Graphical User Interface (UGUI). Structural Biology Research Center, Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1781-o1782
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds