organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2045-o2046

2-[(E)-2-(1H-Indol-3-yl)ethen­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 15 July 2009; accepted 24 July 2009; online 31 July 2009)

In the title compound, C16H15N2+·C6H4ClO3S, the cation exists in an E configuration with respect to the central C=C bond and is approximately planar, with a dihedral angle of 2.95 (5)° between the pyridinium and indole rings. The mean plane of the π-conjugated system of the cation and the benzene ring of the anion are inclined to each other at a dihedral angle of 69.65 (4)°. In the crystal packing, the cations are stacked in an anti­parallel manner along the a axis, resulting in a ππ inter­action with a centroid–centroid distance of 3.5889 (7) Å. The anions are linked into a chain along the a axis by weak C—H⋯O inter­actions. The cations are linked with the anions into a three-dimensional network by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. There are also short O⋯Cl [3.1272 (10) Å] and C⋯O [3.1432 (14)–3.3753 (14) Å] contacts. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Weir et al. (2003[Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697-4700.]); Yang et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83-86.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2006[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802-o1804.], 2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.], 2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.], 2009[Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N2+·C6H4ClO3S

  • Mr = 426.91

  • Monoclinic, P 21 /c

  • a = 7.4891 (1) Å

  • b = 13.1650 (1) Å

  • c = 20.3428 (2) Å

  • β = 98.801 (1)°

  • V = 1982.06 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.942

  • 39049 measured reflections

  • 8706 independent reflections

  • 7032 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 8706 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.891 (18) 1.864 (19) 2.7541 (14) 176.2 (18)
C1—H1A⋯O3 0.93 2.53 3.2380 (14) 133
C7—H7A⋯O2ii 0.93 2.59 3.3067 (14) 134
C14—H14A⋯O2iii 0.93 2.52 3.2605 (14) 137
C16—H16C⋯O2iii 0.96 2.37 3.2645 (15) 156
C19—H19A⋯O1iv 0.93 2.30 3.1432 (14) 151
C21—H21A⋯O3iii 0.93 2.55 3.1885 (14) 127
C4—H4ACg3v 0.93 2.85 3.5956 (11) 138
C16—H16ACg1vi 0.96 2.72 3.4622 (12) 134
C16—H16BCg3 0.96 2.67 3.5533 (11) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1. Cg1 and Cg3 are the centroids of the N2/C8–C9/C10/C15 and C10–C15 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Molecules with extensive conjugated π systems are attractive candidates for non-linear optical (NLO) studies (Ogawa et al., 2008; Weir et al., 2003; Yang et al., 2007). However a molecule with extensive conjugated π systems does not always exhibit second order NLO properties unless the alignment of these molecules is in a noncentrosymmetric space group in the crystal. In our NLO research we have solved a number of crystal structures of pyridinium salt derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009) which we attempt to examine in details of the relationship between their crystal packings and the NLO properties. We herein report the crystal structure of the title compound (I) which is iso-structure and iso-packing with 2-[(E)-2(1H-Indol-3-yl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate (Chantrapromma et al., 2009).

Figure 1 shows the asymmetric unit of (I) which consists of a C16H15N2+ cation and a C6H4ClO3S- anion. The cation exists in the E configuration with respect to the C6C7 double bond [1.3567 (14) Å] and is essentially planar with the dihedral angle between the pyridinium and indole rings being 2.96 (5)° and the torsion angles C4–C5–C6–C7 = -1.21 (17)° and C6–C7–C8–C15 = -176.40 (11)°. The indole ring system is planar with the maximum deviation of 0.014 (1) Å for atom C8. The mean planes through π-conjugated systems of the cation and the anion are inclined to each other with an interplanar angle of 69.65 (4)°. The methyl group is co-planar with the attached N1/C1–C5 ring. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and are comparable with those in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The arrangement of the cations and anions is interesting (Fig. 2). The cations are stacked in an antiparallel manner along the a axis resulting in a ππ interaction with the distance Cg1···Cg2 = 3.5889 (7) Å (symmetry code: -x, -y, -z). The anions are linked together into chains by weak C—H···O interactions along the same direction. The cations are linked to the anions into a three dimensional network by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1). There are O···Cl [3.1272 (10) Å] and C···O [3.1432 (14)–3.3753 (14) Å] short contacts. The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the N2/C8–C9/C10/C15, N1/C1–C5 and C10–C15 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Ogawa et al. (2008); Weir et al. (2003); Yang et al. (2007). For related structures, see, for example: Chanawanno et al. (2008); Chantrapromma et al. (2006, 2007, 2008, 2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1, Cg2 and Cg3 are the centroids of the N2/C8–C9/C10/C15, N1/C1–C5 and C10–C15 rings, respectively.

Experimental top

The title compound was synthesized by disolving silver(I) p-chlorobenzenesulfonate (Chantrapromma et al., 2006) (0.20 g, 0.67 mmol) in methanol (20 ml) which upon heating was added a solution of 2-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium iodide (Chantrapromma et al., 2009) (0.24 g, 0.67 mmol) in hot methanol (30 ml). The mixture turned yellow and cloudy immediately. After stirring for 0.5 hr, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give an orange gum. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after a few weeks (m.p. 457-459 K).

Refinement top

H atom attached to N was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C-H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.59 Å from S1 and the deepest hole is located at 0.65 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
2-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate top
Crystal data top
C16H15N2+·C6H4ClO3SF(000) = 888
Mr = 426.91Dx = 1.431 Mg m3
Monoclinic, P21/cMelting point = 457–459 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4891 (1) ÅCell parameters from 8706 reflections
b = 13.1650 (1) Åθ = 1.8–35.0°
c = 20.3428 (2) ŵ = 0.33 mm1
β = 98.801 (1)°T = 100 K
V = 1982.06 (4) Å3Block, yellow
Z = 40.34 × 0.28 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8706 independent reflections
Radiation source: sealed tube7032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.899, Tmax = 0.942k = 2116
39049 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.614P]
where P = (Fo2 + 2Fc2)/3
8706 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H15N2+·C6H4ClO3SV = 1982.06 (4) Å3
Mr = 426.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4891 (1) ŵ = 0.33 mm1
b = 13.1650 (1) ÅT = 100 K
c = 20.3428 (2) Å0.34 × 0.28 × 0.19 mm
β = 98.801 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7032 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.942Rint = 0.034
39049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.88 e Å3
8706 reflectionsΔρmin = 0.41 e Å3
267 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55212 (4)0.54773 (2)0.181673 (15)0.02519 (7)
S10.02841 (3)0.876545 (19)0.222068 (12)0.01458 (6)
O10.17202 (11)0.82466 (7)0.24875 (5)0.02482 (17)
O20.08774 (12)0.92193 (7)0.15750 (4)0.02477 (17)
O30.07291 (12)0.94718 (7)0.26916 (5)0.02529 (18)
N10.23969 (12)0.71072 (7)0.41746 (4)0.01633 (15)
N20.22567 (13)0.29591 (8)0.64537 (5)0.02030 (17)
H1N20.208 (2)0.2594 (15)0.6807 (9)0.037 (5)*
C10.21569 (15)0.80936 (9)0.39837 (5)0.02025 (19)
H1A0.23590.82830.35610.024*
C20.16256 (16)0.88143 (9)0.43974 (6)0.0221 (2)
H2A0.14550.94850.42590.026*
C30.13459 (16)0.85187 (9)0.50329 (6)0.0224 (2)
H3A0.10080.89970.53270.027*
C40.15718 (15)0.75206 (9)0.52220 (5)0.02003 (19)
H4A0.13740.73280.56450.024*
C50.20982 (14)0.67805 (8)0.47878 (5)0.01632 (17)
C60.23338 (15)0.57173 (8)0.49536 (5)0.01806 (18)
H6A0.27060.52820.46410.022*
C70.20377 (14)0.53228 (8)0.55435 (5)0.01702 (17)
H7A0.16800.57770.58480.020*
C80.22168 (14)0.42820 (8)0.57473 (5)0.01636 (17)
C90.19715 (15)0.39707 (9)0.63827 (5)0.01877 (18)
H9A0.16570.43980.67110.023*
C100.26815 (14)0.25655 (8)0.58670 (5)0.01868 (18)
C110.30803 (16)0.15650 (9)0.57189 (6)0.0239 (2)
H11A0.30970.10500.60330.029*
C120.34503 (17)0.13712 (10)0.50843 (7)0.0270 (2)
H12A0.37310.07130.49690.032*
C130.34089 (17)0.21514 (10)0.46122 (6)0.0267 (2)
H13A0.36460.19960.41880.032*
C140.30232 (16)0.31472 (9)0.47616 (5)0.0216 (2)
H14A0.30010.36560.44430.026*
C150.26664 (14)0.33719 (8)0.54046 (5)0.01706 (17)
C160.29792 (15)0.63874 (9)0.36910 (5)0.01985 (19)
H16A0.40800.60610.38860.030*
H16B0.31780.67490.32990.030*
H16C0.20580.58840.35740.030*
C170.13112 (13)0.78168 (8)0.20886 (5)0.01531 (17)
C180.31082 (14)0.81082 (8)0.20881 (5)0.01712 (17)
H18A0.34420.87850.21550.021*
C190.43933 (14)0.73877 (8)0.19873 (5)0.01824 (18)
H19A0.55870.75770.19810.022*
C200.38669 (15)0.63786 (8)0.18961 (5)0.01780 (18)
C210.20887 (15)0.60731 (8)0.18910 (5)0.01905 (19)
H21A0.17640.53950.18260.023*
C220.07961 (14)0.68040 (8)0.19856 (5)0.01777 (18)
H22A0.04030.66150.19800.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02721 (14)0.01858 (13)0.03119 (14)0.00623 (10)0.00897 (10)0.00183 (10)
S10.01485 (10)0.01459 (11)0.01460 (10)0.00137 (8)0.00322 (7)0.00272 (8)
O10.0196 (4)0.0241 (4)0.0330 (4)0.0001 (3)0.0107 (3)0.0088 (3)
O20.0280 (4)0.0255 (4)0.0211 (4)0.0071 (3)0.0046 (3)0.0085 (3)
O30.0208 (4)0.0233 (4)0.0310 (4)0.0017 (3)0.0015 (3)0.0100 (3)
N10.0178 (4)0.0155 (4)0.0150 (3)0.0022 (3)0.0004 (3)0.0002 (3)
N20.0231 (4)0.0187 (4)0.0190 (4)0.0001 (3)0.0028 (3)0.0044 (3)
C10.0227 (5)0.0176 (5)0.0196 (4)0.0029 (4)0.0003 (4)0.0032 (4)
C20.0240 (5)0.0156 (5)0.0254 (5)0.0000 (4)0.0000 (4)0.0021 (4)
C30.0244 (5)0.0175 (5)0.0247 (5)0.0024 (4)0.0019 (4)0.0031 (4)
C40.0238 (5)0.0181 (5)0.0182 (4)0.0022 (4)0.0034 (4)0.0008 (4)
C50.0177 (4)0.0162 (4)0.0147 (4)0.0002 (3)0.0015 (3)0.0006 (3)
C60.0227 (5)0.0150 (4)0.0169 (4)0.0016 (4)0.0045 (3)0.0001 (3)
C70.0190 (4)0.0159 (4)0.0159 (4)0.0005 (3)0.0022 (3)0.0000 (3)
C80.0179 (4)0.0157 (4)0.0153 (4)0.0004 (3)0.0019 (3)0.0012 (3)
C90.0201 (4)0.0190 (5)0.0172 (4)0.0010 (4)0.0029 (3)0.0014 (3)
C100.0171 (4)0.0167 (5)0.0217 (4)0.0002 (3)0.0010 (3)0.0016 (4)
C110.0210 (5)0.0156 (5)0.0338 (6)0.0004 (4)0.0006 (4)0.0016 (4)
C120.0237 (5)0.0184 (5)0.0384 (6)0.0017 (4)0.0032 (5)0.0064 (5)
C130.0275 (6)0.0241 (6)0.0290 (5)0.0001 (4)0.0063 (4)0.0089 (4)
C140.0248 (5)0.0203 (5)0.0200 (4)0.0011 (4)0.0043 (4)0.0030 (4)
C150.0168 (4)0.0162 (5)0.0178 (4)0.0005 (3)0.0015 (3)0.0002 (3)
C160.0238 (5)0.0205 (5)0.0155 (4)0.0021 (4)0.0036 (3)0.0015 (3)
C170.0163 (4)0.0144 (4)0.0151 (4)0.0010 (3)0.0019 (3)0.0016 (3)
C180.0177 (4)0.0146 (4)0.0190 (4)0.0014 (3)0.0027 (3)0.0003 (3)
C190.0167 (4)0.0172 (5)0.0208 (4)0.0007 (3)0.0028 (3)0.0002 (3)
C200.0209 (4)0.0155 (4)0.0174 (4)0.0029 (4)0.0041 (3)0.0007 (3)
C210.0240 (5)0.0133 (4)0.0205 (4)0.0016 (4)0.0053 (4)0.0005 (3)
C220.0191 (4)0.0154 (4)0.0189 (4)0.0038 (3)0.0032 (3)0.0002 (3)
Geometric parameters (Å, º) top
Cl1—C201.7407 (11)C8—C151.4515 (15)
S1—O11.4480 (8)C9—H9A0.9300
S1—O21.4495 (8)C10—C111.3937 (16)
S1—O31.4615 (9)C10—C151.4172 (15)
S1—C171.7769 (11)C11—C121.3848 (19)
N1—C11.3595 (14)C11—H11A0.9300
N1—C51.3699 (13)C12—C131.4033 (19)
N1—C161.4790 (14)C12—H12A0.9300
N2—C91.3531 (15)C13—C141.3862 (17)
N2—C101.3823 (15)C13—H13A0.9300
N2—H1N20.891 (18)C14—C151.4060 (15)
C1—C21.3673 (17)C14—H14A0.9300
C1—H1A0.9300C16—H16A0.9600
C2—C31.3961 (17)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.3723 (16)C17—C221.3949 (15)
C3—H3A0.9300C17—C181.3996 (14)
C4—C51.4111 (15)C18—C191.3887 (15)
C4—H4A0.9300C18—H18A0.9300
C5—C61.4442 (15)C19—C201.3901 (15)
C6—C71.3567 (14)C19—H19A0.9300
C6—H6A0.9300C20—C211.3896 (16)
C7—C81.4318 (15)C21—C221.3990 (15)
C7—H7A0.9300C21—H21A0.9300
C8—C91.3947 (14)C22—H22A0.9300
O1—S1—O2113.07 (5)C11—C10—C15123.00 (10)
O1—S1—O3113.29 (6)C12—C11—C10117.11 (11)
O2—S1—O3112.84 (6)C12—C11—H11A121.4
O1—S1—C17106.28 (5)C10—C11—H11A121.4
O2—S1—C17105.82 (5)C11—C12—C13121.10 (11)
O3—S1—C17104.64 (5)C11—C12—H12A119.5
C1—N1—C5121.81 (9)C13—C12—H12A119.5
C1—N1—C16117.49 (9)C14—C13—C12121.72 (11)
C5—N1—C16120.70 (9)C14—C13—H13A119.1
C9—N2—C10109.27 (9)C12—C13—H13A119.1
C9—N2—H1N2125.2 (12)C13—C14—C15118.59 (11)
C10—N2—H1N2125.2 (12)C13—C14—H14A120.7
N1—C1—C2121.68 (10)C15—C14—H14A120.7
N1—C1—H1A119.2C14—C15—C10118.46 (10)
C2—C1—H1A119.2C14—C15—C8135.36 (10)
C1—C2—C3118.40 (11)C10—C15—C8106.17 (9)
C1—C2—H2A120.8N1—C16—H16A109.5
C3—C2—H2A120.8N1—C16—H16B109.5
C4—C3—C2119.79 (11)H16A—C16—H16B109.5
C4—C3—H3A120.1N1—C16—H16C109.5
C2—C3—H3A120.1H16A—C16—H16C109.5
C3—C4—C5121.33 (10)H16B—C16—H16C109.5
C3—C4—H4A119.3C22—C17—C18120.38 (10)
C5—C4—H4A119.3C22—C17—S1121.17 (8)
N1—C5—C4116.96 (10)C18—C17—S1118.44 (8)
N1—C5—C6119.06 (9)C19—C18—C17120.07 (10)
C4—C5—C6123.98 (9)C19—C18—H18A120.0
C7—C6—C5123.15 (10)C17—C18—H18A120.0
C7—C6—H6A118.4C18—C19—C20118.93 (10)
C5—C6—H6A118.4C18—C19—H19A120.5
C6—C7—C8126.99 (10)C20—C19—H19A120.5
C6—C7—H7A116.5C21—C20—C19121.96 (10)
C8—C7—H7A116.5C21—C20—Cl1119.80 (8)
C9—C8—C7121.99 (10)C19—C20—Cl1118.19 (8)
C9—C8—C15106.00 (9)C20—C21—C22118.85 (10)
C7—C8—C15132.01 (9)C20—C21—H21A120.6
N2—C9—C8110.32 (10)C22—C21—H21A120.6
N2—C9—H9A124.8C17—C22—C21119.79 (10)
C8—C9—H9A124.8C17—C22—H22A120.1
N2—C10—C11128.76 (11)C21—C22—H22A120.1
N2—C10—C15108.23 (10)
C5—N1—C1—C20.81 (16)C13—C14—C15—C101.26 (16)
C16—N1—C1—C2179.81 (10)C13—C14—C15—C8179.77 (12)
N1—C1—C2—C30.65 (17)N2—C10—C15—C14178.58 (10)
C1—C2—C3—C41.28 (17)C11—C10—C15—C141.74 (16)
C2—C3—C4—C50.51 (18)N2—C10—C15—C80.33 (12)
C1—N1—C5—C41.56 (15)C11—C10—C15—C8179.35 (10)
C16—N1—C5—C4179.08 (9)C9—C8—C15—C14177.96 (12)
C1—N1—C5—C6178.44 (10)C7—C8—C15—C142.8 (2)
C16—N1—C5—C60.92 (14)C9—C8—C15—C100.68 (12)
C3—C4—C5—N10.90 (16)C7—C8—C15—C10178.61 (11)
C3—C4—C5—C6179.10 (11)O1—S1—C17—C2225.07 (10)
N1—C5—C6—C7178.80 (10)O2—S1—C17—C2295.40 (9)
C4—C5—C6—C71.21 (17)O3—S1—C17—C22145.20 (9)
C5—C6—C7—C8179.27 (10)O1—S1—C17—C18155.09 (8)
C6—C7—C8—C9176.40 (11)O2—S1—C17—C1884.44 (9)
C6—C7—C8—C152.78 (19)O3—S1—C17—C1834.96 (9)
C10—N2—C9—C80.61 (13)C22—C17—C18—C190.23 (15)
C7—C8—C9—N2178.58 (10)S1—C17—C18—C19179.92 (8)
C15—C8—C9—N20.79 (12)C17—C18—C19—C200.80 (15)
C9—N2—C10—C11179.81 (11)C18—C19—C20—C211.17 (16)
C9—N2—C10—C150.15 (12)C18—C19—C20—Cl1176.49 (8)
N2—C10—C11—C12179.53 (11)C19—C20—C21—C220.48 (16)
C15—C10—C11—C120.86 (17)Cl1—C20—C21—C22177.14 (8)
C10—C11—C12—C130.48 (18)C18—C17—C22—C210.93 (15)
C11—C12—C13—C140.92 (19)S1—C17—C22—C21179.23 (8)
C12—C13—C14—C150.01 (18)C20—C21—C22—C170.57 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.891 (18)1.864 (19)2.7541 (14)176.2 (18)
C1—H1A···O30.932.533.2380 (14)133
C7—H7A···O2ii0.932.593.3067 (14)134
C14—H14A···O2iii0.932.523.2605 (14)137
C16—H16C···O2iii0.962.373.2645 (15)156
C19—H19A···O1iv0.932.303.1432 (14)151
C21—H21A···O3iii0.932.553.1885 (14)127
C4—H4A···Cg3v0.932.853.5956 (11)138
C16—H16A···Cg1vi0.962.723.4622 (12)134
C16—H16B···Cg30.962.673.5533 (11)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z1/2; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15N2+·C6H4ClO3S
Mr426.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4891 (1), 13.1650 (1), 20.3428 (2)
β (°) 98.801 (1)
V3)1982.06 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.34 × 0.28 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.899, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
39049, 8706, 7032
Rint0.034
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections8706
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.891 (18)1.864 (19)2.7541 (14)176.2 (18)
C1—H1A···O30.932.533.2380 (14)133
C7—H7A···O2ii0.932.593.3067 (14)134
C14—H14A···O2iii0.932.523.2605 (14)137
C16—H16C···O2iii0.962.373.2645 (15)156
C19—H19A···O1iv0.932.303.1432 (14)151
C21—H21A···O3iii0.932.553.1885 (14)127
C4—H4A···Cg3v0.932.853.5956 (11)138
C16—H16A···Cg1vi0.962.723.4622 (12)134
C16—H16B···Cg30.962.673.5533 (11)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z1/2; (vi) x+1, y+1, z+1.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802–o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697–4700.  Web of Science CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2045-o2046
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds