metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m924-m925

catena-Poly[[[[N′-(4-cyano­benzyl­­idene)nicotinohydrazide]silver(I)]-μ-[N′-4-cyano­benzyl­­idene)nicotinohydrazide]] hexa­fluoridoarsenate]

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 16 June 2009; accepted 9 July 2009; online 15 July 2009)

In the title compound, {[Ag(C14H10N4O)2]AsF6}n, the AgI ion is coordinated by two N atoms from two different pyridyl rings and one N atom from one carbonitrile group of three different N′-(4-cyano­benzyl­idene)nicotinohydrazide ligands in a distorted T-shaped geometry. The Ag—Ncarbonitrile bond distance is significant longer than those of Ag—Npyrid­yl. The bond angles around the AgI atom are also not in line with those in an ideal T-shaped geometry. One type of ligand acts as the bridge that connects AgI atoms into chains along [[\overline{1}]01]. These chains are linked to each other via N—H⋯O hydrogen bonds and Ag⋯O inter­actions with an Ag⋯O separation of 2.869 (2) Å. In addition, the [AsF6] counter-anions are linked to the hydrazone groups through N—H⋯F hydrogen bonds. Four of the F atoms of the [AsF6] anion are disordered over two sets of sites with occupancies of 0.732 (9) and 0.268 (9).

Related literature

For background to silver coordination polymers, see: Dong et al. (2004[Dong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem. 43, 5603-5612.]); Niu et al. (2007[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710-5713.], 2008[Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305-m307.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]); Vatsadze et al. (2004[Vatsadze, S. Z., Kovalkina, M. A., Sviridenkova, N. V., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G. & Howard, J. A. K. (2004). CrystEngComm, 6, 112-115.]); Zheng et al. (2003[Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509-1514.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C14H10N4O)2]AsF6

  • Mr = 797.31

  • Monoclinic, C 2/c

  • a = 22.3785 (15) Å

  • b = 13.7662 (9) Å

  • c = 19.8482 (14) Å

  • β = 99.948 (1)°

  • V = 6022.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 173 K

  • 0.52 × 0.12 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.448, Tmax = 0.823

  • 19207 measured reflections

  • 6896 independent reflections

  • 5017 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.02

  • 6896 reflections

  • 460 parameters

  • 96 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N5 2.183 (3)
Ag1—N1 2.204 (2)
Ag1—N4i 2.458 (3)
N5—Ag1—N1 156.68 (9)
N5—Ag1—N4i 108.09 (11)
N1—Ag1—N4i 92.87 (11)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H29⋯O1ii 0.868 (19) 2.13 (2) 2.976 (4) 165 (4)
N2—H28⋯F5 0.868 (19) 2.19 (2) 3.003 (4) 157 (3)
Symmetry code: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound, (I), the central silver ion is coordinated by two nitrogen atoms from two pyridyl rings of two different ligands (N1, N5) and one nitrogen atom from one carbonitrile group of another ligand [N4i. Symmetry codes: (i) x - 1/2, -y + 1/2, z + 1/2] forming a slightly distorted T-shaped coordination enviroment (Fig. 1). The bond angle of N1—Ag1—N5 is shorter than 180 ° and bond angles of N1—Ag1—N4i and N5—Ag1—N4i are larger than the right angle (Table 1). The N—Ag bond distances for pyridyl rings are 2.183 (3) and 2.204 (2) Å, which are smaller than N—Ag bond distance for carbonitrile group.

The compound 4-Cyanobenzylidene nicotinohydrazide act as the µ2-bridging ligands only by coordinations of pyridyl and carbonitrile nitrogen atoms. Each of these bridging ligands connects two silver atoms together by one pyridyl nitrogen atom N1 and one carbonitrile nitrogen atom N8 to form a one-dimensional chain along [-1,0,1] direction. The shortest distance between two silver atoms in one chain is about 16.28 Å. Meanwhile, the rest half of all ligands acting as terminal ligands are coordinated to silver atoms in chains only through pyridyl nitrogen atoms with the carbonitrile nitrogen atoms uncoordinating (Fig.2).

There are hydrogen bondings between uncoordinating groups, including pyridyl rings of terminal ligands and all hydrazone groups and counteranions. On one hand, counteranions AsF6- are attached to ligands of chains by N—H···F hydrogen bondings (Table 2). On the other hand, there are also N—H···O hydrogen bondings (Table 2) between two neighbouring antiparallel chains. In addition to these intermolecular hydrogen bondings, there are weak Ag···O interactions between one oxygen atom O1 of the terminal ligand in one chain and one silver atom in the neighbouring chain with the Ag···O separations of 2.876 (2) Å (Fig. 3).

Related literature top

For related literature, see: Dong et al. (2004); Niu et al. (2007, 2008); Sumby & Hardie (2005); Vatsadze et al. (2004); Zheng et al. (2003). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

A solution of AgAsF6 (0.032 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 4-Cyanobenzylidene nicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield about 30%). One very strong bonds at 699 cm-1 in the IR spectra was assigned to AsF6-.

Refinement top

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions, and then thier positions and displacement parameters were refined with the N—H bond distance to 0.88 (2) Å. Four F atoms (F1—F4) of the hexafluoroarsenate anions are disordered over two positions, with maximum and minimum occupancies of 0.732 (9) and 0.268 (9), respectively. All As—F bond lengths were restrained to 1.70 (2) Å. Restraints of displacement parameters for six F or disordered F atoms were also performed. The final difference Fourier map had a max and min electron density of 0.63 and -0.47 e Å-3, respectively, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the AgI coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. [Symmetry codes: (i) x - 1/2, -y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. A e llipsoid diagram at the 50% probability level showing the one-dimensional chain. All counteranions and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A diagram showing the intermolecular hydrogen bondings indicated by blue and red dashed lines and Ag···O interactions indicated by pink dashed lines.
catena-Poly[[[[N'-(4- cyanobenzylidene)nicotinohydrazide]silver(I)]-µ-[N'-4- cyanobenzylidene)nicotinohydrazide]] hexafluoridoarsenate] top
Crystal data top
[Ag(C14H10N4O)2]AsF6F(000) = 3152
Mr = 797.31Dx = 1.759 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5377 reflections
a = 22.3785 (15) Åθ = 2.1–27.5°
b = 13.7662 (9) ŵ = 1.84 mm1
c = 19.8482 (14) ÅT = 173 K
β = 99.948 (1)°Prism, colourless
V = 6022.6 (7) Å30.52 × 0.12 × 0.11 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6896 independent reflections
Radiation source: fine-focus sealed tube5017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2918
Tmin = 0.448, Tmax = 0.823k = 1717
19207 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0526P)2 + 5.7237P]
where P = (Fo2 + 2Fc2)/3
6896 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.63 e Å3
96 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag(C14H10N4O)2]AsF6V = 6022.6 (7) Å3
Mr = 797.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3785 (15) ŵ = 1.84 mm1
b = 13.7662 (9) ÅT = 173 K
c = 19.8482 (14) Å0.52 × 0.12 × 0.11 mm
β = 99.948 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6896 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5017 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.823Rint = 0.028
19207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03896 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.63 e Å3
6896 reflectionsΔρmin = 0.47 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.183850 (14)0.187891 (18)0.197856 (15)0.05547 (11)
N10.20655 (13)0.32823 (17)0.15519 (13)0.0404 (6)
N20.33194 (14)0.3474 (2)0.02005 (14)0.0471 (7)
N30.37007 (13)0.3480 (2)0.02752 (14)0.0480 (7)
N40.61376 (15)0.2368 (3)0.23488 (16)0.0667 (9)
N50.17227 (13)0.03059 (19)0.20139 (13)0.0435 (6)
N60.26690 (13)0.16253 (19)0.09119 (14)0.0440 (6)
N70.30676 (13)0.2188 (2)0.06251 (14)0.0452 (6)
N80.5343 (2)0.4267 (3)0.1374 (2)0.0990 (15)
O10.29409 (11)0.49652 (17)0.01123 (12)0.0540 (6)
O20.25137 (12)0.28036 (16)0.16611 (13)0.0569 (6)
C10.19143 (15)0.4121 (2)0.18267 (16)0.0426 (7)
H10.16690.40980.21720.051*
C20.21021 (17)0.5008 (2)0.16271 (17)0.0478 (8)
H20.19920.55850.18380.057*
C30.24503 (16)0.5056 (2)0.11201 (16)0.0448 (8)
H30.25820.56650.09750.054*
C40.26041 (14)0.4200 (2)0.08263 (15)0.0365 (7)
C50.24032 (15)0.3332 (2)0.10548 (16)0.0389 (7)
H50.25080.27450.08520.047*
C60.29680 (15)0.4257 (2)0.02645 (15)0.0400 (7)
C70.40093 (16)0.2709 (3)0.02952 (17)0.0513 (8)
H70.39550.21790.00050.062*
C80.44496 (15)0.2627 (3)0.07618 (16)0.0461 (8)
C90.46234 (17)0.3429 (3)0.11026 (18)0.0499 (8)
H90.44400.40420.10550.060*
C100.50556 (18)0.3345 (3)0.15064 (18)0.0528 (9)
H100.51780.39010.17320.063*
C110.53175 (15)0.2446 (3)0.15883 (16)0.0476 (8)
C120.51410 (18)0.1635 (3)0.1266 (2)0.0594 (10)
H120.53120.10180.13300.071*
C130.47112 (18)0.1734 (3)0.0847 (2)0.0588 (10)
H130.45940.11810.06150.071*
C140.57804 (17)0.2385 (3)0.20097 (18)0.0527 (9)
C150.13563 (17)0.0091 (2)0.24079 (17)0.0491 (8)
H150.11170.03270.26330.059*
C160.13129 (18)0.1077 (3)0.24988 (19)0.0538 (9)
H160.10510.13330.27840.065*
C170.16547 (17)0.1682 (2)0.21708 (18)0.0473 (8)
H170.16330.23660.22280.057*
C180.20314 (14)0.1297 (2)0.17564 (15)0.0370 (7)
C190.20477 (15)0.0293 (2)0.16906 (15)0.0397 (7)
H190.23010.00210.14020.048*
C200.24264 (15)0.1984 (2)0.14389 (16)0.0398 (7)
C210.33262 (17)0.1765 (2)0.01809 (18)0.0488 (8)
H210.32410.11020.00720.059*
C220.37552 (16)0.2300 (3)0.01634 (17)0.0473 (8)
C230.38639 (17)0.3282 (3)0.00388 (19)0.0507 (8)
H230.36540.36140.02690.061*
C240.42693 (18)0.3782 (3)0.03525 (19)0.0552 (9)
H240.43410.44530.02600.066*
C250.45761 (17)0.3300 (3)0.0808 (2)0.0556 (9)
C260.44726 (19)0.2317 (3)0.0942 (2)0.0625 (10)
H260.46820.19870.12510.075*
C270.40629 (19)0.1822 (3)0.0622 (2)0.0587 (10)
H270.39900.11520.07150.070*
C280.5002 (2)0.3825 (3)0.1133 (2)0.0700 (12)
As10.377276 (19)0.09939 (3)0.14799 (2)0.05697 (13)
F50.38907 (15)0.21973 (18)0.13618 (16)0.1020 (9)
F60.36110 (16)0.01902 (19)0.1542 (2)0.1292 (13)
H280.3375 (17)0.306 (2)0.0537 (14)0.056 (11)*
H290.2555 (17)0.1086 (19)0.0702 (18)0.061 (12)*
F10.3247 (3)0.1084 (5)0.0751 (3)0.142 (3)0.732 (9)
F20.3208 (3)0.1242 (3)0.1925 (3)0.111 (2)0.732 (9)
F30.4252 (4)0.0990 (7)0.2174 (5)0.203 (4)0.732 (9)
F40.4308 (3)0.0776 (4)0.1007 (5)0.135 (3)0.732 (9)
F1'0.3034 (4)0.1259 (9)0.1417 (10)0.111 (5)0.268 (9)
F2'0.3871 (8)0.1196 (8)0.2320 (4)0.095 (5)0.268 (9)
F3'0.4516 (4)0.0732 (7)0.1563 (8)0.084 (4)0.268 (9)
F4'0.3710 (9)0.0775 (9)0.0641 (5)0.116 (5)0.268 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0725 (2)0.03016 (14)0.0723 (2)0.00011 (12)0.03658 (16)0.00469 (11)
N10.0519 (16)0.0292 (13)0.0455 (15)0.0014 (11)0.0234 (13)0.0001 (10)
N20.0587 (18)0.0446 (15)0.0450 (16)0.0072 (14)0.0290 (14)0.0084 (13)
N30.0510 (17)0.0533 (17)0.0455 (15)0.0038 (14)0.0248 (13)0.0021 (13)
N40.063 (2)0.081 (2)0.066 (2)0.0065 (18)0.0362 (18)0.0071 (18)
N50.0556 (17)0.0335 (14)0.0455 (15)0.0012 (12)0.0209 (13)0.0030 (11)
N60.0540 (17)0.0341 (14)0.0469 (16)0.0066 (12)0.0175 (14)0.0016 (12)
N70.0505 (17)0.0408 (14)0.0466 (15)0.0024 (13)0.0150 (13)0.0058 (12)
N80.104 (3)0.080 (3)0.134 (4)0.010 (2)0.081 (3)0.022 (3)
O10.0690 (17)0.0442 (13)0.0556 (14)0.0016 (12)0.0298 (13)0.0130 (11)
O20.0758 (18)0.0302 (11)0.0705 (16)0.0041 (11)0.0285 (14)0.0048 (11)
C10.0487 (19)0.0373 (17)0.0474 (18)0.0036 (14)0.0241 (15)0.0002 (13)
C20.066 (2)0.0305 (15)0.0521 (19)0.0043 (15)0.0249 (17)0.0060 (14)
C30.058 (2)0.0293 (15)0.0505 (19)0.0016 (14)0.0196 (16)0.0020 (13)
C40.0427 (17)0.0330 (15)0.0356 (15)0.0004 (13)0.0119 (13)0.0004 (12)
C50.0505 (19)0.0277 (14)0.0429 (17)0.0005 (13)0.0202 (15)0.0033 (12)
C60.0471 (19)0.0370 (16)0.0393 (16)0.0033 (14)0.0169 (14)0.0004 (13)
C70.054 (2)0.055 (2)0.050 (2)0.0019 (17)0.0259 (17)0.0060 (16)
C80.0439 (19)0.056 (2)0.0419 (17)0.0036 (16)0.0161 (15)0.0004 (15)
C90.057 (2)0.0452 (18)0.053 (2)0.0041 (16)0.0240 (17)0.0017 (15)
C100.062 (2)0.050 (2)0.052 (2)0.0039 (17)0.0267 (18)0.0020 (16)
C110.0433 (19)0.059 (2)0.0446 (18)0.0019 (16)0.0179 (15)0.0010 (15)
C120.060 (2)0.055 (2)0.070 (2)0.0133 (18)0.031 (2)0.0047 (18)
C130.062 (2)0.053 (2)0.070 (2)0.0099 (18)0.034 (2)0.0157 (18)
C140.052 (2)0.060 (2)0.050 (2)0.0052 (17)0.0173 (17)0.0032 (17)
C150.059 (2)0.0436 (18)0.0493 (19)0.0054 (16)0.0234 (17)0.0022 (15)
C160.060 (2)0.048 (2)0.062 (2)0.0014 (17)0.0319 (19)0.0104 (16)
C170.056 (2)0.0322 (16)0.057 (2)0.0058 (14)0.0179 (17)0.0073 (14)
C180.0437 (18)0.0300 (14)0.0378 (16)0.0026 (13)0.0086 (14)0.0019 (12)
C190.0498 (19)0.0324 (15)0.0399 (16)0.0027 (13)0.0164 (14)0.0021 (12)
C200.0467 (19)0.0278 (15)0.0457 (17)0.0014 (13)0.0099 (15)0.0021 (12)
C210.055 (2)0.0429 (18)0.0496 (19)0.0016 (16)0.0121 (17)0.0012 (15)
C220.0473 (19)0.0509 (19)0.0449 (18)0.0051 (16)0.0113 (15)0.0066 (15)
C230.051 (2)0.052 (2)0.052 (2)0.0068 (16)0.0190 (17)0.0040 (16)
C240.057 (2)0.051 (2)0.062 (2)0.0013 (17)0.0216 (18)0.0078 (17)
C250.048 (2)0.063 (2)0.060 (2)0.0091 (18)0.0211 (18)0.0159 (18)
C260.067 (3)0.067 (3)0.060 (2)0.013 (2)0.029 (2)0.0030 (19)
C270.065 (3)0.051 (2)0.064 (2)0.0047 (18)0.022 (2)0.0003 (17)
C280.066 (3)0.068 (3)0.084 (3)0.014 (2)0.037 (2)0.014 (2)
As10.0619 (3)0.03366 (19)0.0799 (3)0.00267 (16)0.0248 (2)0.00097 (16)
F50.140 (3)0.0476 (14)0.123 (2)0.0164 (15)0.034 (2)0.0104 (14)
F60.139 (3)0.0433 (14)0.224 (4)0.0122 (16)0.086 (3)0.0032 (19)
F10.126 (5)0.177 (6)0.109 (4)0.018 (4)0.025 (3)0.016 (4)
F20.147 (5)0.084 (3)0.127 (4)0.013 (3)0.092 (4)0.024 (3)
F30.152 (6)0.254 (8)0.177 (7)0.023 (6)0.046 (5)0.065 (6)
F40.125 (5)0.092 (3)0.219 (7)0.009 (3)0.115 (5)0.000 (4)
F1'0.075 (6)0.096 (7)0.162 (11)0.008 (6)0.021 (7)0.017 (8)
F2'0.161 (10)0.079 (6)0.054 (5)0.020 (6)0.043 (6)0.004 (4)
F3'0.055 (5)0.066 (6)0.132 (9)0.006 (4)0.021 (6)0.000 (6)
F4'0.161 (11)0.093 (7)0.085 (7)0.017 (7)0.003 (7)0.018 (6)
Geometric parameters (Å, º) top
Ag1—N52.183 (3)C11—C121.378 (5)
Ag1—N12.204 (2)C11—C141.442 (4)
Ag1—N4i2.458 (3)C12—C131.382 (5)
N1—C51.344 (4)C12—H120.9500
N1—C11.345 (4)C13—H130.9500
N2—C61.353 (4)C15—C161.374 (5)
N2—N31.378 (3)C15—H150.9500
N2—H280.868 (19)C16—C171.370 (5)
N3—C71.271 (5)C16—H160.9500
N4—C141.131 (4)C17—C181.382 (4)
N4—Ag1ii2.458 (3)C17—H170.9500
N5—C191.335 (4)C18—C191.389 (4)
N5—C151.343 (4)C18—C201.506 (4)
N6—C201.353 (4)C19—H190.9500
N6—N71.376 (4)C21—C221.468 (5)
N6—H290.868 (19)C21—H210.9500
N7—C211.275 (4)C22—C231.389 (5)
N8—C281.144 (5)C22—C271.397 (5)
O1—C61.224 (4)C23—C241.371 (5)
O2—C201.214 (4)C23—H230.9500
C1—C21.372 (4)C24—C251.394 (5)
C1—H10.9500C24—H240.9500
C2—C31.377 (4)C25—C261.391 (6)
C2—H20.9500C25—C281.436 (5)
C3—C41.384 (4)C26—C271.381 (5)
C3—H30.9500C26—H260.9500
C4—C51.381 (4)C27—H270.9500
C4—C61.492 (4)As1—F31.593 (6)
C5—H50.9500As1—F2'1.667 (8)
C7—C81.468 (4)As1—F41.671 (4)
C7—H70.9500As1—F4'1.674 (9)
C8—C131.384 (5)As1—F1'1.675 (10)
C8—C91.386 (5)As1—F61.679 (3)
C9—C101.363 (5)As1—F3'1.682 (8)
C9—H90.9500As1—F21.696 (4)
C10—C111.392 (5)As1—F51.700 (2)
C10—H100.9500As1—F11.704 (5)
N5—Ag1—N1156.68 (9)N5—C19—C18123.0 (3)
N5—Ag1—N4i108.09 (11)N5—C19—H19118.5
N1—Ag1—N4i92.87 (11)C18—C19—H19118.5
C5—N1—C1117.8 (3)O2—C20—N6124.0 (3)
C5—N1—Ag1121.53 (19)O2—C20—C18120.1 (3)
C1—N1—Ag1120.4 (2)N6—C20—C18115.9 (3)
C6—N2—N3119.9 (3)N7—C21—C22120.3 (3)
C6—N2—H28117 (2)N7—C21—H21119.8
N3—N2—H28120 (3)C22—C21—H21119.8
C7—N3—N2114.9 (3)C23—C22—C27118.9 (3)
C14—N4—Ag1ii153.9 (3)C23—C22—C21120.9 (3)
C19—N5—C15117.8 (3)C27—C22—C21120.2 (3)
C19—N5—Ag1121.3 (2)C24—C23—C22121.2 (3)
C15—N5—Ag1120.7 (2)C24—C23—H23119.4
C20—N6—N7119.3 (3)C22—C23—H23119.4
C20—N6—H29124 (3)C23—C24—C25119.6 (4)
N7—N6—H29116 (3)C23—C24—H24120.2
C21—N7—N6115.7 (3)C25—C24—H24120.2
N1—C1—C2122.4 (3)C26—C25—C24120.2 (3)
N1—C1—H1118.8C26—C25—C28120.3 (4)
C2—C1—H1118.8C24—C25—C28119.5 (4)
C1—C2—C3119.6 (3)C27—C26—C25119.6 (4)
C1—C2—H2120.2C27—C26—H26120.2
C3—C2—H2120.2C25—C26—H26120.2
C2—C3—C4118.7 (3)C26—C27—C22120.6 (4)
C2—C3—H3120.7C26—C27—H27119.7
C4—C3—H3120.7C22—C27—H27119.7
C5—C4—C3118.7 (3)N8—C28—C25177.5 (5)
C5—C4—C6122.8 (3)F3—As1—F492.5 (4)
C3—C4—C6118.5 (3)F2'—As1—F4127.4 (6)
N1—C5—C4122.8 (3)F3—As1—F4'142.0 (7)
N1—C5—H5118.6F2'—As1—F4'177.2 (7)
C4—C5—H5118.6F4—As1—F4'49.8 (6)
O1—C6—N2123.1 (3)F3—As1—F1'125.0 (7)
O1—C6—C4121.5 (3)F2'—As1—F1'89.8 (6)
N2—C6—C4115.4 (3)F4—As1—F1'142.2 (6)
N3—C7—C8120.7 (3)F4'—As1—F1'93.0 (7)
N3—C7—H7119.6F3—As1—F693.1 (3)
C8—C7—H7119.6F2'—As1—F694.7 (4)
C13—C8—C9119.2 (3)F4—As1—F692.9 (2)
C13—C8—C7119.3 (3)F4'—As1—F685.2 (4)
C9—C8—C7121.5 (3)F1'—As1—F689.7 (4)
C10—C9—C8120.5 (3)F3—As1—F3'53.7 (5)
C10—C9—H9119.8F2'—As1—F3'88.9 (6)
C8—C9—H9119.8F4'—As1—F3'88.3 (6)
C9—C10—C11120.0 (3)F1'—As1—F3'178.7 (7)
C9—C10—H10120.0F6—As1—F3'90.4 (4)
C11—C10—H10120.0F3—As1—F290.1 (4)
C12—C11—C10120.4 (3)F2'—As1—F255.1 (5)
C12—C11—C14121.0 (3)F4—As1—F2177.1 (3)
C10—C11—C14118.6 (3)F4'—As1—F2127.7 (6)
C11—C12—C13119.0 (3)F6—As1—F288.16 (19)
C11—C12—H12120.5F3'—As1—F2143.6 (5)
C13—C12—H12120.5F3—As1—F591.5 (3)
C12—C13—C8120.9 (3)F2'—As1—F588.8 (4)
C12—C13—H13119.5F4—As1—F587.4 (2)
C8—C13—H13119.5F4'—As1—F591.5 (4)
N4—C14—C11177.6 (4)F1'—As1—F587.3 (4)
N5—C15—C16122.9 (3)F6—As1—F5175.38 (19)
N5—C15—H15118.6F3'—As1—F592.8 (4)
C16—C15—H15118.6F2—As1—F591.32 (19)
C17—C16—C15118.7 (3)F3—As1—F1175.8 (4)
C17—C16—H16120.6F2'—As1—F1142.2 (5)
C15—C16—H16120.6F4—As1—F189.6 (3)
C16—C17—C18119.8 (3)F1'—As1—F152.7 (6)
C16—C17—H17120.1F6—As1—F190.4 (3)
C18—C17—H17120.1F3'—As1—F1128.6 (5)
C17—C18—C19117.8 (3)F2—As1—F187.7 (3)
C17—C18—C20118.0 (3)F5—As1—F185.0 (2)
C19—C18—C20124.0 (3)
N5—Ag1—N1—C517.9 (4)C10—C11—C12—C131.6 (6)
N4i—Ag1—N1—C5172.2 (3)C14—C11—C12—C13177.7 (4)
N5—Ag1—N1—C1168.2 (3)C11—C12—C13—C81.4 (6)
N4i—Ag1—N1—C113.8 (3)C9—C8—C13—C120.0 (6)
C6—N2—N3—C7179.8 (3)C7—C8—C13—C12178.0 (4)
N1—Ag1—N5—C1927.0 (4)C19—N5—C15—C161.2 (5)
N4i—Ag1—N5—C19180.0 (2)Ag1—N5—C15—C16173.6 (3)
N1—Ag1—N5—C15158.4 (3)N5—C15—C16—C170.4 (6)
N4i—Ag1—N5—C155.4 (3)C15—C16—C17—C180.3 (6)
C20—N6—N7—C21172.9 (3)C16—C17—C18—C190.1 (5)
C5—N1—C1—C21.3 (5)C16—C17—C18—C20176.5 (3)
Ag1—N1—C1—C2172.9 (3)C15—N5—C19—C181.4 (5)
N1—C1—C2—C31.1 (6)Ag1—N5—C19—C18173.4 (2)
C1—C2—C3—C40.3 (5)C17—C18—C19—N50.7 (5)
C2—C3—C4—C50.1 (5)C20—C18—C19—N5175.4 (3)
C2—C3—C4—C6178.4 (3)N7—N6—C20—O23.8 (5)
C1—N1—C5—C40.9 (5)N7—N6—C20—C18175.7 (3)
Ag1—N1—C5—C4173.2 (2)C17—C18—C20—O216.5 (5)
C3—C4—C5—N10.2 (5)C19—C18—C20—O2159.6 (3)
C6—C4—C5—N1178.7 (3)C17—C18—C20—N6164.0 (3)
N3—N2—C6—O14.6 (5)C19—C18—C20—N619.9 (5)
N3—N2—C6—C4176.0 (3)N6—N7—C21—C22179.3 (3)
C5—C4—C6—O1150.3 (3)N7—C21—C22—C233.3 (5)
C3—C4—C6—O128.2 (5)N7—C21—C22—C27176.5 (3)
C5—C4—C6—N229.0 (5)C27—C22—C23—C240.6 (6)
C3—C4—C6—N2152.4 (3)C21—C22—C23—C24179.2 (3)
N2—N3—C7—C8177.9 (3)C22—C23—C24—C250.4 (6)
N3—C7—C8—C13170.4 (4)C23—C24—C25—C260.2 (6)
N3—C7—C8—C911.7 (6)C23—C24—C25—C28179.8 (4)
C13—C8—C9—C101.3 (6)C24—C25—C26—C270.2 (6)
C7—C8—C9—C10176.7 (4)C28—C25—C26—C27179.7 (4)
C8—C9—C10—C111.2 (6)C25—C26—C27—C220.4 (6)
C9—C10—C11—C120.3 (6)C23—C22—C27—C260.6 (6)
C9—C10—C11—C14179.0 (4)C21—C22—C27—C26179.2 (4)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H29···O1iii0.87 (2)2.13 (2)2.976 (4)165 (4)
N2—H28···F50.87 (2)2.19 (2)3.003 (4)157 (3)
Symmetry code: (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ag(C14H10N4O)2]AsF6
Mr797.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)22.3785 (15), 13.7662 (9), 19.8482 (14)
β (°) 99.948 (1)
V3)6022.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.52 × 0.12 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.448, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
19207, 6896, 5017
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.02
No. of reflections6896
No. of parameters460
No. of restraints96
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.47

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT (Siemens, 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Ag1—N52.183 (3)Ag1—N4i2.458 (3)
Ag1—N12.204 (2)
N5—Ag1—N1156.68 (9)N1—Ag1—N4i92.87 (11)
N5—Ag1—N4i108.09 (11)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H29···O1ii0.868 (19)2.13 (2)2.976 (4)165 (4)
N2—H28···F50.868 (19)2.19 (2)3.003 (4)157 (3)
Symmetry code: (ii) x+1/2, y+1/2, z.
 

Acknowledgements

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713.  Web of Science CSD CrossRef Google Scholar
First citationNiu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar
First citationVatsadze, S. Z., Kovalkina, M. A., Sviridenkova, N. V., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G. & Howard, J. A. K. (2004). CrystEngComm, 6, 112–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m924-m925
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds