organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(6-Methyl-2-pyrid­yl)-2-phen­­oxy-3,4-di­hydro-1,3,2-benzoxaza­phosphirine 2-oxide

aDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Physics, S.V. University, Tirupati 517 502, India
*Correspondence e-mail: rk_paper@rediffmail.com

(Received 26 June 2009; accepted 22 July 2009; online 25 July 2009)

In the title compound, C19H17N2O3P, the six-membered 1,3,2-oxaza­phospho­rine ring adopts a twist-boat conformation with the phosphoryl O atom in an equatorial position. The P=O(oxide) bond length is 1.457 (1) Å and the average value of the P—O distances is 1.588 Å. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For the chemistry of organophospho­rus heterocyclic compounds, see: Przybylski et al. (1977[Przybylski, M., Ringsdorf, H., Lenssen, U., Peter, G., Voelcker, G., Wagner, T. & Hohorst, H. J. (1977). Biomed. Mass Spectr. 4, 209-215.]); Riffel et al. (1984[Riffel, H., Kleemam, S. & Hess, H. (1984). Z. Anorg. Allg. Chem. 508, 61-72.]); Kleemann & Fluck (1985[Kleemann, S. & Fluck, E. (1985). Z. Anorg. Allg. Chem. 562, 141-144.]); Bettemann et al. (1987[Bettemann, G., Look, P. & Schomburg, D. (1987). Phosphorus Sulfur, 30, 499-502.]); He et al. (1998[He, L., Zhuo, R., Cai, F. & Lu, A. (1998). Wuhan Univ. J. Nat. Sci. 3, 126-128.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N2O3P

  • Mr = 352.33

  • Monoclinic, P 21 /c

  • a = 9.2852 (7) Å

  • b = 14.2972 (11) Å

  • c = 13.3446 (8) Å

  • β = 104.545 (7)°

  • V = 1714.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 14565 measured reflections

  • 4922 independent reflections

  • 4064 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.149

  • S = 1.08

  • 4922 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.57 3.497 (3) 174
C9—H9⋯O2i 0.93 2.82 3.706 (2) 159
C7—H7A⋯O3i 0.97 2.85 3.425 (2) 119
C3—H3⋯O1ii 0.93 2.81 3.373 (3) 120
C11—H11⋯O3iii 0.93 2.66 3.561 (2) 165
C6—H6C⋯O2iv 0.96 2.81 3.443 (3) 124
C18—H18⋯N2iv 0.93 2.92 3.818 (5) 163
C10—H10⋯Cg2iii 0.93 2.78 3.437 (2) 128
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x+1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the N1,C1–C5 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organophosphorus heterocycle compounds containing O and N in a six membered ring have gained much attention because of anti-cancer, anti-tumor and their most significant biological activities as pesticides and drugs(Riffel et al.1984, Kleemann et al.1985, Bettemann et al. 1987, He et al.1998).).

Various compounds of this class viz. cyclophosphamide(2-bis(2-chloroethyl)amino tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide),ifosfamide(3-(2-chloroethyl)-2-(2-chloroethylamino)tetrahydro-2H-1,3,1-oxazaphosphorine2-oxide) and trofosfamide(3-(2-chloroethyl)-2-(bis(2-chloroethyl)amino)tetrahydro-2H-1,3,2oxazaphosphorine2-oxide) act as antitumor agents (Przybylski et al.,1977).

Because of these significant properties of organophosphorus heterocycle compounds a new compound of this class, i.e., 3-(6-methyl-pyrindin-2-yl)-2-phenoxy-3, 4-dihydrobenzo[e][1,3,2]oxazaphosphirine 2-oxide[I] has been synthesized and its crystal structure is reported here.

In the title compound, [C19 H17 N2 O3 P], the six membered oxazaphosphorine ring adopts a twist boat conformation with phosphoryl oxygen atom at equatorial position. The PO(3) bond length is 1.457 (1)Å and the average value of P—O distance is 1.588 Å. The crystal structure is stabilized by C—H···O and C—H···Π interactions.

Related literature top

For the chemistry of organophosphorus heterocyclic compounds, see: Przybylski et al. (1977); Riffel et al. (1984); Kleemann et al. (1985); Bettemann et al. (1987); He et al. (1998).

Experimental top

The title compound was synthesized by adding a solution of phenylphosphorodichloridate (0.002 mole) in 25 ml of dry tetrahydrofuran dropwise over a period of twenty minutes to a stirred solution of 2-{[(6-methyl-2-pyridyl)amino]methyl}phenol (0.002 mole) and triethylamine (0.004 mole) in 30 ml of dry tetrahydrofuran at 0°C. After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and stirred for 30 min. Later the reaction mixture was heated to 45–50°C and maintained at that temperature for three hours with stirring. Completion of the reaction was monitored by TLC analysis. Triethylamine- hydrochloride was separated from the reaction mixture by filtration and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (100–200 mesh) as adsorbent and ethyl acetate:hexane as eluent to afford pure product. Suitable colourless transparent rectangular crystals were obtained from 2-propanol by slow evaporation technique.

Refinement top

All hydrogen atoms were fixed as a riding model over their respective heavier atoms and refined isotropically with distance restraints 0.93–0.97 Å

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Depiction of C—H..O interactions in the title compound(I)
3-(6-Methyl-2-pyridyl)-2-phenoxy-3,4-dihydro-1,3,2-benzoxazaphosphirine 2-oxide top
Crystal data top
C19H17N2O3PF(000) = 736
Mr = 352.33Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4064 reflections
a = 9.2852 (7) Åθ = 3.2–30.1°
b = 14.2972 (11) ŵ = 0.18 mm1
c = 13.3446 (8) ÅT = 293 K
β = 104.545 (7)°Rectangular, colourless
V = 1714.8 (2) Å30.30 × 0.24 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.017
ω–2θ scansθmax = 30.1°, θmin = 3.2°
14565 measured reflectionsh = 1313
4922 independent reflectionsk = 1920
4064 reflections with I > 2σ(I)l = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.9398P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4922 reflectionsΔρmax = 0.53 e Å3
227 parametersΔρmin = 0.35 e Å3
Crystal data top
C19H17N2O3PV = 1714.8 (2) Å3
Mr = 352.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2852 (7) ŵ = 0.18 mm1
b = 14.2972 (11) ÅT = 293 K
c = 13.3446 (8) Å0.30 × 0.24 × 0.18 mm
β = 104.545 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4064 reflections with I > 2σ(I)
14565 measured reflectionsRint = 0.017
4922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
4922 reflectionsΔρmin = 0.35 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.05137 (15)0.29221 (11)0.30611 (10)0.0431 (3)
P10.15450 (5)0.32614 (3)0.24817 (3)0.03212 (13)
O20.29805 (14)0.26052 (10)0.27286 (10)0.0408 (3)
N20.10589 (16)0.32584 (11)0.11909 (11)0.0342 (3)
N10.08432 (16)0.42593 (11)0.12856 (11)0.0366 (3)
O10.22025 (15)0.42756 (10)0.27690 (10)0.0409 (3)
C40.0855 (2)0.36620 (14)0.04067 (13)0.0391 (4)
H40.04370.32710.08140.047*
C130.40587 (19)0.26785 (13)0.21602 (14)0.0358 (4)
C50.02466 (18)0.37381 (12)0.06657 (13)0.0320 (3)
C80.35786 (19)0.27514 (13)0.10910 (14)0.0363 (4)
C30.2102 (2)0.41944 (15)0.08287 (15)0.0450 (4)
H30.25220.41820.15390.054*
C20.2726 (2)0.47435 (15)0.02010 (17)0.0471 (5)
H20.35650.51030.04820.057*
C90.4650 (2)0.27788 (16)0.05260 (15)0.0439 (4)
H90.4360.28360.01910.053*
C10.2078 (2)0.47521 (14)0.08637 (16)0.0414 (4)
C110.6595 (2)0.26582 (18)0.21010 (19)0.0546 (5)
H110.76030.26270.24320.065*
C140.2129 (2)0.47435 (14)0.36794 (15)0.0417 (4)
C70.1947 (2)0.27754 (18)0.05690 (16)0.0496 (5)
H7A0.18030.3090.00930.06*
H7B0.15860.21390.04360.06*
C100.6146 (2)0.27217 (16)0.10275 (18)0.0482 (5)
H100.68560.27260.06440.058*
C120.5546 (2)0.26421 (17)0.26780 (16)0.0499 (5)
H120.58360.26080.33970.06*
C190.1181 (3)0.5491 (2)0.3572 (3)0.0860 (10)
H190.05970.56650.29260.103*
C60.2732 (3)0.5295 (2)0.1604 (2)0.0663 (7)
H6A0.28750.48870.21430.099*
H6B0.36730.55540.12410.099*
H6C0.20680.57920.19040.099*
C160.2972 (7)0.5017 (3)0.5483 (3)0.1263 (18)
H160.35970.48630.61220.152*
C180.1120 (5)0.5980 (3)0.4456 (5)0.136 (2)
H180.04770.64860.44050.163*
C170.2005 (7)0.5726 (4)0.5416 (4)0.131 (2)
H170.19290.60440.60080.157*
C150.3051 (4)0.4509 (2)0.4605 (2)0.0841 (10)
H150.37240.40190.46530.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0409 (7)0.0518 (8)0.0405 (7)0.0031 (6)0.0173 (5)0.0077 (6)
P10.0333 (2)0.0364 (2)0.0278 (2)0.00139 (17)0.00979 (15)0.00310 (16)
O20.0383 (6)0.0486 (8)0.0376 (6)0.0065 (6)0.0135 (5)0.0127 (6)
N20.0328 (7)0.0418 (8)0.0282 (6)0.0032 (6)0.0079 (5)0.0012 (6)
N10.0345 (7)0.0399 (8)0.0352 (7)0.0003 (6)0.0083 (6)0.0003 (6)
O10.0492 (7)0.0427 (7)0.0329 (6)0.0091 (6)0.0145 (5)0.0034 (5)
C40.0400 (9)0.0458 (10)0.0310 (8)0.0047 (8)0.0080 (7)0.0007 (7)
C130.0346 (8)0.0349 (8)0.0392 (8)0.0019 (7)0.0117 (7)0.0049 (7)
C50.0308 (7)0.0337 (8)0.0314 (7)0.0042 (6)0.0078 (6)0.0019 (6)
C80.0342 (8)0.0379 (9)0.0377 (8)0.0003 (7)0.0107 (7)0.0025 (7)
C30.0459 (10)0.0507 (11)0.0339 (9)0.0058 (8)0.0018 (7)0.0082 (8)
C20.0395 (10)0.0432 (10)0.0534 (11)0.0020 (8)0.0017 (8)0.0109 (9)
C90.0438 (10)0.0511 (11)0.0397 (9)0.0029 (8)0.0160 (8)0.0003 (8)
C10.0385 (9)0.0375 (9)0.0475 (10)0.0004 (7)0.0096 (7)0.0000 (8)
C110.0326 (9)0.0686 (15)0.0609 (13)0.0015 (9)0.0089 (9)0.0047 (11)
C140.0473 (10)0.0404 (10)0.0404 (9)0.0088 (8)0.0165 (8)0.0073 (8)
C70.0351 (9)0.0737 (15)0.0393 (9)0.0042 (9)0.0081 (7)0.0191 (10)
C100.0389 (9)0.0512 (12)0.0597 (12)0.0003 (8)0.0221 (9)0.0022 (10)
C120.0397 (10)0.0657 (14)0.0419 (10)0.0061 (9)0.0055 (8)0.0082 (9)
C190.0632 (16)0.077 (2)0.114 (3)0.0136 (15)0.0152 (16)0.0319 (19)
C60.0618 (14)0.0702 (17)0.0664 (15)0.0237 (13)0.0150 (12)0.0107 (13)
C160.220 (5)0.113 (3)0.0428 (15)0.033 (4)0.028 (2)0.0242 (19)
C180.104 (3)0.113 (3)0.209 (6)0.006 (3)0.075 (4)0.095 (4)
C170.190 (5)0.115 (3)0.124 (4)0.075 (4)0.104 (4)0.083 (3)
C150.129 (3)0.0735 (18)0.0397 (12)0.0134 (18)0.0022 (14)0.0051 (12)
Geometric parameters (Å, º) top
O3—P11.4567 (13)C1—C61.500 (3)
P1—O11.5825 (14)C11—C121.385 (3)
P1—O21.5953 (14)C11—C101.391 (3)
P1—N21.6675 (14)C11—H110.93
O2—C131.404 (2)C14—C151.356 (3)
N2—C51.416 (2)C14—C191.369 (4)
N2—C71.479 (2)C7—H7A0.97
N1—C51.333 (2)C7—H7B0.97
N1—C11.343 (2)C10—H100.93
O1—C141.404 (2)C12—H120.93
C4—C31.382 (3)C19—C181.385 (5)
C4—C51.405 (2)C19—H190.93
C4—H40.93C6—H6A0.96
C13—C121.381 (3)C6—H6B0.96
C13—C81.388 (2)C6—H6C0.96
C8—C91.391 (2)C16—C171.342 (7)
C8—C71.501 (3)C16—C151.396 (5)
C3—C21.377 (3)C16—H160.93
C3—H30.93C18—C171.384 (8)
C2—C11.397 (3)C18—H180.93
C2—H20.93C17—H170.93
C9—C101.385 (3)C15—H150.93
C9—H90.93
O3—P1—O1116.20 (8)C10—C11—H11119.9
O3—P1—O2108.72 (8)C15—C14—C19122.0 (3)
O1—P1—O2103.73 (8)C15—C14—O1120.9 (2)
O3—P1—N2120.26 (8)C19—C14—O1116.8 (2)
O1—P1—N2103.92 (7)N2—C7—C8112.96 (15)
O2—P1—N2101.96 (7)N2—C7—H7A109
C13—O2—P1121.11 (11)C8—C7—H7A109
C5—N2—C7118.48 (14)N2—C7—H7B109
C5—N2—P1119.09 (12)C8—C7—H7B109
C7—N2—P1122.43 (12)H7A—C7—H7B107.8
C5—N1—C1118.50 (15)C9—C10—C11120.42 (18)
C14—O1—P1123.14 (12)C9—C10—H10119.8
C3—C4—C5117.00 (18)C11—C10—H10119.8
C3—C4—H4121.5C13—C12—C11118.40 (19)
C5—C4—H4121.5C13—C12—H12120.8
C12—C13—C8122.67 (17)C11—C12—H12120.8
C12—C13—O2119.08 (16)C14—C19—C18117.9 (4)
C8—C13—O2118.21 (15)C14—C19—H19121
N1—C5—C4123.51 (16)C18—C19—H19121
N1—C5—N2113.65 (14)C1—C6—H6A109.5
C4—C5—N2122.83 (16)C1—C6—H6B109.5
C13—C8—C9118.07 (16)H6A—C6—H6B109.5
C13—C8—C7120.34 (16)C1—C6—H6C109.5
C9—C8—C7121.58 (17)H6A—C6—H6C109.5
C2—C3—C4120.22 (18)H6B—C6—H6C109.5
C2—C3—H3119.9C17—C16—C15120.8 (4)
C4—C3—H3119.9C17—C16—H16119.6
C3—C2—C1118.98 (18)C15—C16—H16119.6
C3—C2—H2120.5C17—C18—C19120.9 (4)
C1—C2—H2120.5C17—C18—H18119.5
C10—C9—C8120.23 (18)C19—C18—H18119.5
C10—C9—H9119.9C16—C17—C18119.4 (3)
C8—C9—H9119.9C16—C17—H17120.3
N1—C1—C2121.71 (18)C18—C17—H17120.3
N1—C1—C6116.08 (18)C14—C15—C16118.8 (4)
C2—C1—C6122.20 (19)C14—C15—H15120.6
C12—C11—C10120.19 (18)C16—C15—H15120.6
C12—C11—H11119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.573.497 (3)174
C9—H9···O2i0.932.823.706 (2)159
C7—H7A···O3i0.972.853.425 (2)119
C3—H3···O1ii0.932.813.373 (3)120
C11—H11···O3iii0.932.663.561 (2)165
C6—H6C···O2iv0.962.813.443 (3)124
C18—H18···N2iv0.932.923.818 (5)163
C10—H10···Cg2iii0.932.783.437 (2)128
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17N2O3P
Mr352.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2852 (7), 14.2972 (11), 13.3446 (8)
β (°) 104.545 (7)
V3)1714.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14565, 4922, 4064
Rint0.017
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.08
No. of reflections4922
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.573.497 (3)174
C9—H9···O2i0.932.823.706 (2)159
C7—H7A···O3i0.972.853.425 (2)119
C3—H3···O1ii0.932.813.373 (3)120
C11—H11···O3iii0.932.663.561 (2)165
C6—H6C···O2iv0.962.813.443 (3)124
C18—H18···N2iv0.932.923.818 (5)163
C10—H10···Cg2iii0.932.783.437 (2)128
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Science and Technology of the Government of India for funding under research project SR/S2/CMP-47/2003.

References

First citationBettemann, G., Look, P. & Schomburg, D. (1987). Phosphorus Sulfur, 30, 499–502.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, L., Zhuo, R., Cai, F. & Lu, A. (1998). Wuhan Univ. J. Nat. Sci. 3, 126–128.  CAS Google Scholar
First citationKleemann, S. & Fluck, E. (1985). Z. Anorg. Allg. Chem. 562, 141–144.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPrzybylski, M., Ringsdorf, H., Lenssen, U., Peter, G., Voelcker, G., Wagner, T. & Hohorst, H. J. (1977). Biomed. Mass Spectr. 4, 209–215.  CrossRef CAS Web of Science Google Scholar
First citationRiffel, H., Kleemam, S. & Hess, H. (1984). Z. Anorg. Allg. Chem. 508, 61–72.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds