organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2030-o2031

N-[2-(6-Methyl-4-oxo-4H-chromen-3-yl)-4-oxo­thia­zolidin-3-yl]furan-2-carbox­amide N,N-di­methyl­formamide solvate

aDepartment of Chemistry, Pharmaceutical Sciences, Southern Medical Universtiy, Guangzhou 510515, People's Republic of China
*Correspondence e-mail: zzz_100600@163.com

(Received 18 July 2009; accepted 24 July 2009; online 29 July 2009)

The title mol­ecule, C18H14N2O5S·C3H7NO, comprises of a carboxamide group bonded to a furan ring and a distorted envelope-shaped 4-oxothia­zolidin-3-yl group which is connected to a substituted 6-methyl-4-oxo-4H-chromen-3-yl group. Extensive strong N—H⋯O and weak C—H⋯O inter­molecular hydrogen-bonding inter­actions occur between dimethyl­formamide (DMF), the crystallizing solvent, and the various heterocyclic groups within the compound, as well as additional weak C—H⋯O inter­actions between the heterocyclic groups themselves. The carboxyl group of the DMF solvent mol­ecule forms a trifurcated (four-center) acceptor hydrogen-bond inter­action with the carboxamide, furan and 6-methyl-4-oxo-4H-chromen-3-yl groups. The dihedral angles between the planar chromone group [maximum deviation = 0.0377 (18)°] and those of the furan and 4-oxothia­zolidin-3-yl groups are 89.4 (6) and 78.5 (1)°, respectively.

Related literature

For related structures, see: Zhou et al. (2005[Zhou, Z.-Z., Huang, W., Zhao, P.-L., Chen, Q. & Yang, G.-F. (2005). Acta Cryst. E61, o2261-o2262.]). For the preparation of the title compound, see: Zhou et al. (2008[Zhou, Z. Z., Chen, Q. & Yang, G. F. (2008). Chin. J. Org. Chem. 28, 1385-1392.]). For general background to glycoluril and its derivatives, see: Maliar et al. (2004[Maliar, T., Jedinak, A., Kadrabova, J. & Sturdik, E. (2004). Eur. J. Med. Chem. 39, 241-248.]), Zhou et al. (2007[Zhou, Z. Z., Ding, M. W. & Yang, G. F. (2007). Heteroat. Chem. 18, 381-389.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O5S·C3H7NO

  • Mr = 443.48

  • Triclinic, [P \overline 1]

  • a = 8.4141 (1) Å

  • b = 11.5676 (14) Å

  • c = 11.8382 (14) Å

  • α = 87.138 (1)°

  • β = 70.503 (2)°

  • γ = 78.419 (2)°

  • V = 1063.86 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.934, Tmax = 0.962

  • 7900 measured reflections

  • 4568 independent reflections

  • 3163 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 0.96

  • 4568 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6 0.77 (2) 2.10 (2) 2.856 (2) 169 (2)
C4—H4⋯O6i 0.93 2.50 3.421 (3) 172
C10—H10⋯O4ii 0.93 2.49 3.332 (2) 151
C11—H11⋯O5ii 0.98 2.50 3.267 (2) 135 (1)
C13—H13B⋯O3iii 0.97 2.55 3.441 (2) 153
C16—H16⋯O6 0.93 2.36 3.193 (3) 150
C18—H18⋯O3iv 0.93 2.47 3.342 (3) 157
C20—H20C⋯O1v 0.96 2.46 3.361 (3) 157
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tri-substituted chromone (1,4-benzopyrone) pharmacophore is an important structural element in medicinal chemistry, and shows a broad spectrum of pharmacological activities (Maliar et al. (2004), Zhou et al. (2007)). Hence, we were curious to explore the family of biheterocyclic compounds that contain both the thiazolidinone and chromone pharmacophores, with a view to discovering novel lead structures for the development of antifungal agents.

The title molecule is comprised of a carboxamide group bonded to a furan ring and a distorted envelope shaped (Cremer & Pople, 1975) 4-oxothiazolidin-3-yl group (Q(2) = 0.1878 (18) Å, Phi(2) = 188.3 (6)°; for an ideal envelope Phi(2) = k x 36) which is connected to a substituted 6-methyl-4-oxo-4H-chromen-3-yl group (Fig. 1). Extensive strong N2—H2···O6 and weak C16—H16···O6, C20—H20···O6, hydrogen bonding intermolecular interactions occur between dimethylformamide (DMF), the crystallizing solvent, and the various heterocyclic groups within the compound as well as additional weak C—H···O interactions between the heterocyclic groups themselves (Table 1, Fig. 2). The carboxyl group of the DMF solvent forms a trifurcated (4-center) acceptor hydrogen bond interaction with the carboxamide, furan and 6-methyl-4-oxo-4H-chromen-3-yl groups. The dihedral angle between the planar chromone group (max deviation = 0.0377 (18)°) and that of the furan and 4-oxothiazolidin-3-yl groups is 89.4 (6)° and 78.5 (1)°, respectively. Crystal packing is also stabilized by π-π stacking interactions (Cg2—Cg2 = 3.8378 (14) Å; 1 - x, 2 - y, 1 - z; Cg2 is the centroid of the O5/C15—C18 ring).

Related literature top

For related structures, see: Zhou et al. (2005). For the preparation of the title compound, see: Zhou et al. (2008). For general background to glycoluril and its derivatives, see: Maliar et al. (2004), Zhou et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to the procedure reported (Zhou et al., 2008). Crystals appropriate for X-ray data collection were obtained by slow evaporation of the DMF solution at 293 K.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96 Å, and Uiso(H) = 1.49–1.50 UeqC. Each group was allowed to rotate freely about its C–C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.98 Å, N–H = 0.77Å and Uiso(H) = 1.19–1.20Ueq(C,N).)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The packing of the title molecule, showing one layer of molecules connected by strong N—H···O, and weak C—H···O intermolecular hydrogen bonds, and weak π-π stacking interactions.
N-[2-(6-Methyl-4-oxo-4H-chromen-3-yl)-4-oxothiazolidin- 3-yl]furan-2-carboxamide N,N-dimethylformamide solvate top
Crystal data top
C18H14N2O5S·C3H7NOZ = 2
Mr = 443.48F(000) = 464
Triclinic, P1Dx = 1.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4141 (1) ÅCell parameters from 2421 reflections
b = 11.5676 (14) Åθ = 2.5–26.7°
c = 11.8382 (14) ŵ = 0.20 mm1
α = 87.138 (1)°T = 292 K
β = 70.503 (2)°Block, colorless
γ = 78.419 (2)°0.30 × 0.20 × 0.20 mm
V = 1063.86 (18) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4568 independent reflections
Radiation source: fine-focus sealed tube3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.934, Tmax = 0.962k = 1314
7900 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
4568 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H14N2O5S·C3H7NOγ = 78.419 (2)°
Mr = 443.48V = 1063.86 (18) Å3
Triclinic, P1Z = 2
a = 8.4141 (1) ÅMo Kα radiation
b = 11.5676 (14) ŵ = 0.20 mm1
c = 11.8382 (14) ÅT = 292 K
α = 87.138 (1)°0.30 × 0.20 × 0.20 mm
β = 70.503 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3163 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.962Rint = 0.043
7900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.25 e Å3
4568 reflectionsΔρmin = 0.17 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2135 (3)0.19985 (18)0.1714 (2)0.0722 (7)
H1A0.14110.17940.13090.108*
H1B0.23380.13810.22510.108*
H1C0.32100.20970.11350.108*
C20.1263 (3)0.31350 (16)0.24164 (17)0.0519 (5)
C30.0211 (3)0.31675 (18)0.34263 (19)0.0580 (6)
H30.05980.24690.36800.070*
C40.1099 (3)0.41904 (17)0.40512 (18)0.0542 (5)
H40.20820.41920.47130.065*
C50.0502 (2)0.52272 (16)0.36769 (16)0.0445 (4)
C60.0963 (2)0.52416 (15)0.26977 (15)0.0420 (4)
C70.1832 (3)0.41704 (16)0.20822 (16)0.0484 (5)
H70.28250.41640.14270.058*
C80.1533 (2)0.63617 (16)0.22977 (15)0.0427 (4)
C90.0433 (2)0.73858 (15)0.30060 (15)0.0414 (4)
C100.0936 (2)0.72643 (16)0.39626 (16)0.0467 (5)
H100.15730.79410.44100.056*
C110.0758 (2)0.86128 (16)0.26908 (16)0.0443 (4)
H110.0050.91610.33230.053*
C120.3611 (3)0.89041 (15)0.14565 (16)0.0469 (5)
C130.2766 (3)0.90147 (18)0.05140 (17)0.0573 (5)
H13A0.32360.83350.00270.069*
H13B0.29680.97190.00520.069*
C140.2690 (2)0.93551 (16)0.43651 (15)0.0415 (4)
C150.3436 (2)0.89915 (16)0.53174 (15)0.0430 (4)
C160.4445 (3)0.80082 (19)0.55371 (19)0.0593 (5)
H160.48430.73100.50860.071*
C170.4781 (3)0.8243 (2)0.6579 (2)0.0678 (6)
H170.54430.77280.69520.081*
C180.3975 (3)0.9337 (2)0.69290 (19)0.0650 (6)
H180.39860.97160.76000.078*
C190.7238 (4)0.6242 (3)0.1424 (3)0.1048 (10)
H19A0.66550.65440.08670.157*
H19B0.84570.60780.10130.157*
H19C0.69680.68180.20500.157*
C200.7468 (4)0.4095 (3)0.1255 (3)0.1092 (11)
H20A0.71500.34440.17560.164*
H20B0.86960.40120.09760.164*
H20C0.70740.41050.05810.164*
C210.5459 (3)0.5218 (2)0.2970 (2)0.0710 (6)
H210.51360.45070.32560.085*
N10.2489 (2)0.87432 (13)0.25530 (13)0.0442 (4)
N20.3049 (2)0.85021 (14)0.35237 (14)0.0476 (4)
H20.361 (3)0.7885 (19)0.351 (2)0.057*
N30.6696 (3)0.51810 (17)0.19314 (17)0.0676 (5)
O10.28274 (17)0.64100 (11)0.14324 (11)0.0563 (4)
O20.14547 (16)0.62410 (11)0.43227 (11)0.0507 (3)
O30.51047 (19)0.89574 (13)0.12709 (12)0.0630 (4)
O40.18311 (18)1.03252 (11)0.43361 (11)0.0534 (4)
O50.31260 (18)0.98314 (12)0.61700 (12)0.0576 (4)
O60.4692 (2)0.60997 (13)0.35973 (14)0.0764 (5)
S10.04994 (8)0.91011 (5)0.12526 (5)0.0628 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1061 (19)0.0405 (12)0.0708 (15)0.0139 (12)0.0301 (14)0.0033 (11)
C20.0703 (14)0.0380 (11)0.0530 (11)0.0120 (10)0.0274 (10)0.0036 (9)
C30.0755 (15)0.0429 (12)0.0618 (13)0.0232 (11)0.0255 (11)0.0115 (10)
C40.0597 (13)0.0518 (12)0.0518 (11)0.0213 (10)0.0150 (10)0.0116 (10)
C50.0506 (11)0.0418 (10)0.0418 (10)0.0112 (9)0.0154 (8)0.0037 (8)
C60.0508 (11)0.0376 (10)0.0395 (9)0.0110 (8)0.0163 (8)0.0027 (8)
C70.0585 (12)0.0419 (10)0.0436 (10)0.0105 (9)0.0152 (9)0.0012 (8)
C80.0508 (11)0.0412 (10)0.0370 (9)0.0129 (9)0.0136 (8)0.0021 (8)
C90.0510 (11)0.0369 (10)0.0365 (9)0.0107 (8)0.0134 (8)0.0014 (8)
C100.0516 (11)0.0379 (10)0.0460 (10)0.0071 (9)0.0109 (9)0.0015 (8)
C110.0529 (11)0.0358 (10)0.0403 (10)0.0075 (9)0.0110 (9)0.0008 (8)
C120.0619 (13)0.0316 (10)0.0436 (10)0.0142 (9)0.0098 (9)0.0003 (8)
C130.0808 (15)0.0505 (12)0.0415 (10)0.0224 (11)0.0167 (10)0.0060 (9)
C140.0460 (10)0.0384 (10)0.0368 (9)0.0152 (8)0.0053 (8)0.0005 (8)
C150.0456 (10)0.0449 (11)0.0371 (9)0.0163 (9)0.0071 (8)0.0004 (8)
C160.0659 (14)0.0550 (13)0.0594 (13)0.0103 (11)0.0244 (11)0.0015 (10)
C170.0738 (16)0.0729 (16)0.0672 (14)0.0154 (13)0.0374 (12)0.0094 (12)
C180.0711 (15)0.0889 (18)0.0464 (12)0.0280 (14)0.0270 (11)0.0023 (12)
C190.118 (3)0.101 (2)0.0788 (19)0.0156 (19)0.0172 (18)0.0177 (17)
C200.137 (3)0.094 (2)0.0798 (19)0.016 (2)0.0315 (19)0.0293 (17)
C210.0858 (18)0.0557 (15)0.0702 (16)0.0094 (13)0.0262 (14)0.0010 (12)
N10.0563 (10)0.0408 (9)0.0377 (8)0.0143 (7)0.0156 (7)0.0006 (7)
N20.0655 (11)0.0351 (9)0.0426 (8)0.0052 (8)0.0206 (8)0.0017 (7)
N30.0767 (13)0.0657 (12)0.0566 (11)0.0029 (10)0.0263 (10)0.0027 (10)
O10.0622 (9)0.0481 (8)0.0469 (7)0.0175 (7)0.0017 (7)0.0035 (6)
O20.0532 (8)0.0426 (8)0.0469 (7)0.0117 (6)0.0030 (6)0.0020 (6)
O30.0613 (10)0.0649 (10)0.0587 (9)0.0208 (8)0.0099 (7)0.0031 (7)
O40.0688 (9)0.0368 (7)0.0531 (8)0.0047 (7)0.0206 (7)0.0056 (6)
O50.0661 (9)0.0616 (9)0.0465 (7)0.0110 (7)0.0197 (7)0.0101 (7)
O60.0965 (13)0.0516 (9)0.0663 (10)0.0032 (9)0.0167 (9)0.0069 (8)
S10.0733 (4)0.0633 (4)0.0590 (3)0.0192 (3)0.0307 (3)0.0198 (3)
Geometric parameters (Å, º) top
C1—C21.508 (3)C13—S11.797 (2)
C1—H1A0.9600C13—H13A0.9700
C1—H1B0.9600C13—H13B0.9700
C1—H1C0.9600C14—O41.212 (2)
C2—C71.370 (2)C14—N21.354 (2)
C2—C31.401 (3)C14—C151.470 (3)
C3—C41.367 (3)C15—C161.347 (3)
C3—H30.9300C15—O51.361 (2)
C4—C51.388 (2)C16—C171.404 (3)
C4—H40.9300C16—H160.9300
C5—O21.380 (2)C17—C181.325 (3)
C5—C61.384 (2)C17—H170.9300
C6—C71.404 (3)C18—O51.363 (2)
C6—C81.473 (2)C18—H180.9300
C7—H70.9300C19—N31.430 (3)
C8—O11.230 (2)C19—H19A0.9600
C8—C91.450 (2)C19—H19B0.9600
C9—C101.344 (2)C19—H19C0.9600
C9—C111.504 (2)C20—N31.438 (3)
C10—O21.344 (2)C20—H20A0.9600
C10—H100.9300C20—H20B0.9600
C11—N11.448 (2)C20—H20C0.9600
C11—S11.8349 (19)C21—O61.224 (3)
C11—H110.9800C21—N31.315 (3)
C12—O31.216 (2)C21—H210.9300
C12—N11.356 (2)N1—N21.378 (2)
C12—C131.498 (3)N2—H20.77 (2)
C2—C1—H1A109.5C12—C13—H13B110.1
C2—C1—H1B109.5S1—C13—H13B110.1
H1A—C1—H1B109.5H13A—C13—H13B108.4
C2—C1—H1C109.5O4—C14—N2123.15 (17)
H1A—C1—H1C109.5O4—C14—C15123.24 (16)
H1B—C1—H1C109.5N2—C14—C15113.61 (17)
C7—C2—C3117.65 (18)C16—C15—O5109.77 (17)
C7—C2—C1122.10 (19)C16—C15—C14134.79 (17)
C3—C2—C1120.22 (18)O5—C15—C14115.37 (16)
C4—C3—C2122.26 (18)C15—C16—C17106.6 (2)
C4—C3—H3118.9C15—C16—H16126.7
C2—C3—H3118.9C17—C16—H16126.7
C3—C4—C5118.60 (18)C18—C17—C16106.9 (2)
C3—C4—H4120.7C18—C17—H17126.5
C5—C4—H4120.7C16—C17—H17126.5
O2—C5—C6121.90 (15)C17—C18—O5110.6 (2)
O2—C5—C4116.58 (16)C17—C18—H18124.7
C6—C5—C4121.52 (18)O5—C18—H18124.7
C5—C6—C7117.91 (16)N3—C19—H19A109.5
C5—C6—C8120.29 (16)N3—C19—H19B109.5
C7—C6—C8121.76 (16)H19A—C19—H19B109.5
C2—C7—C6122.04 (18)N3—C19—H19C109.5
C2—C7—H7119.0H19A—C19—H19C109.5
C6—C7—H7119.0H19B—C19—H19C109.5
O1—C8—C9123.67 (16)N3—C20—H20A109.5
O1—C8—C6122.18 (17)N3—C20—H20B109.5
C9—C8—C6114.14 (15)H20A—C20—H20B109.5
C10—C9—C8120.52 (16)N3—C20—H20C109.5
C10—C9—C11117.78 (16)H20A—C20—H20C109.5
C8—C9—C11121.69 (15)H20B—C20—H20C109.5
O2—C10—C9125.11 (17)O6—C21—N3126.2 (2)
O2—C10—H10117.4O6—C21—H21116.9
C9—C10—H10117.4N3—C21—H21116.9
N1—C11—C9113.96 (16)C12—N1—N2120.45 (16)
N1—C11—S1103.67 (11)C12—N1—C11120.75 (16)
C9—C11—S1113.20 (12)N2—N1—C11117.91 (14)
N1—C11—H11109.0C14—N2—N1119.57 (15)
C9—C11—H11109.0C14—N2—H2125.4 (17)
S1—C11—H11109.0N1—N2—H2114.9 (17)
O3—C12—N1124.01 (19)C21—N3—C19120.1 (2)
O3—C12—C13124.74 (17)C21—N3—C20121.3 (2)
N1—C12—C13111.25 (17)C19—N3—C20118.6 (2)
C12—C13—S1108.00 (13)C10—O2—C5117.98 (14)
C12—C13—H13A110.1C15—O5—C18106.03 (16)
S1—C13—H13A110.1C13—S1—C1193.51 (9)
C7—C2—C3—C41.8 (3)N2—C14—C15—C162.3 (3)
C1—C2—C3—C4176.30 (19)O4—C14—C15—O51.2 (2)
C2—C3—C4—C50.8 (3)N2—C14—C15—O5178.98 (14)
C3—C4—C5—O2178.99 (17)O5—C15—C16—C170.1 (2)
C3—C4—C5—C60.3 (3)C14—C15—C16—C17177.0 (2)
O2—C5—C6—C7178.88 (16)C15—C16—C17—C180.1 (2)
C4—C5—C6—C70.4 (3)C16—C17—C18—O50.1 (3)
O2—C5—C6—C81.3 (3)O3—C12—N1—N27.0 (3)
C4—C5—C6—C8178.01 (17)C13—C12—N1—N2173.40 (15)
C3—C2—C7—C61.7 (3)O3—C12—N1—C11175.98 (17)
C1—C2—C7—C6176.35 (18)C13—C12—N1—C114.4 (2)
C5—C6—C7—C20.6 (3)C9—C11—N1—C12109.33 (18)
C8—C6—C7—C2176.91 (17)S1—C11—N1—C1214.16 (19)
C5—C6—C8—O1180.00 (18)C9—C11—N1—N259.9 (2)
C7—C6—C8—O12.5 (3)S1—C11—N1—N2176.57 (11)
C5—C6—C8—C90.4 (2)O4—C14—N2—N12.9 (3)
C7—C6—C8—C9177.10 (16)C15—C14—N2—N1177.28 (14)
O1—C8—C9—C10178.07 (19)C12—N1—N2—C14105.6 (2)
C6—C8—C9—C102.3 (3)C11—N1—N2—C1485.1 (2)
O1—C8—C9—C113.0 (3)O6—C21—N3—C191.2 (4)
C6—C8—C9—C11176.62 (16)O6—C21—N3—C20178.0 (2)
C8—C9—C10—O22.8 (3)C9—C10—O2—C51.0 (3)
C11—C9—C10—O2176.18 (16)C6—C5—O2—C101.1 (3)
C10—C9—C11—N1127.95 (18)C4—C5—O2—C10178.26 (16)
C8—C9—C11—N153.1 (2)C16—C15—O5—C180.1 (2)
C10—C9—C11—S1113.90 (17)C14—C15—O5—C18177.62 (15)
C8—C9—C11—S165.1 (2)C17—C18—O5—C150.0 (2)
O3—C12—C13—S1171.45 (16)C12—C13—S1—C1113.78 (14)
N1—C12—C13—S18.17 (19)N1—C11—S1—C1315.17 (13)
O4—C14—C15—C16177.9 (2)C9—C11—S1—C13108.82 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O60.77 (2)2.10 (2)2.856 (2)169 (2)
C4—H4···O6i0.932.503.421 (3)172
C10—H10···O4ii0.932.493.332 (2)151
C11—H11···O5ii0.982.503.267 (2)135 (1)
C13—H13B···O3iii0.972.553.441 (2)153
C16—H16···O60.932.363.193 (3)150
C18—H18···O3iv0.932.473.342 (3)157
C20—H20C···O1v0.962.463.361 (3)157
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14N2O5S·C3H7NO
Mr443.48
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.4141 (1), 11.5676 (14), 11.8382 (14)
α, β, γ (°)87.138 (1), 70.503 (2), 78.419 (2)
V3)1063.86 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.934, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
7900, 4568, 3163
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 0.96
No. of reflections4568
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O60.77 (2)2.10 (2)2.856 (2)169 (2)
C4—H4···O6i0.932.503.421 (3)171.9
C10—H10···O4ii0.932.493.332 (2)151.4
C11—H11···O5ii0.982.5003.267 (2)135.4 (14)
C13—H13B···O3iii0.972.553.441 (2)153.3
C16—H16···O60.932.363.193 (3)149.6
C18—H18···O3iv0.932.473.342 (3)156.9
C20—H20C···O1v0.962.463.361 (3)157.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z.
 

Acknowledgements

The authors thank Professor Guang-Fu Yang for technical assistance and Dr Meng Xiang-Gao for the data collection. The authors acknowledge financial support from the National Natural Science Foundation of Hubei Province (grant No. 7300452) and the Medical Research Fundation of Science and Technology of Guangdong Province (grant No. B2008103)

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMaliar, T., Jedinak, A., Kadrabova, J. & Sturdik, E. (2004). Eur. J. Med. Chem. 39, 241–248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z. Z., Chen, Q. & Yang, G. F. (2008). Chin. J. Org. Chem. 28, 1385–1392.  Web of Science CrossRef CAS Google Scholar
First citationZhou, Z. Z., Ding, M. W. & Yang, G. F. (2007). Heteroat. Chem. 18, 381–389.  Web of Science CrossRef CAS Google Scholar
First citationZhou, Z.-Z., Huang, W., Zhao, P.-L., Chen, Q. & Yang, G.-F. (2005). Acta Cryst. E61, o2261–o2262.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2030-o2031
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds