organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1908-o1909

2-Amino-5-nitro­phenyl 2-chloro­phenyl ketone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dRL Fine Chem, Bangalore 560 064, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 30 March 2009; accepted 13 July 2009; online 18 July 2009)

In the title compound, C13H9ClN2O3, an intra­molecular hydrogen bond between the carbonyl O and an amine H atom from the 2-amino­benzoyl group stabilizes the mol­ecule, keeping these two groups nearly in the same plane [dihedral angle 14.6 (6)°]. The dihedral angle between the mean planes of the planar 2-amino­benzoyl and 2-chloro­benzoyl groups is 73.8 (6)°. The crystal packing is stabilized by a collection of inter­mediate hydrogen-bonding inter­actions which forms an infinite N—H⋯O⋯H—N—H⋯O hydrogen-bonded chain along the c axis in concert with weak N—H⋯Cl inter­actions in the same direction, producing a two-dimensional inter­molecular bonding network parallel to (001). Additional weak C—Cl⋯Cg [Cl⋯Cg = 3.858 (3) Å] and N—O⋯Cg [O⋯Cg = 3.574 (1) and 3.868 (6) Å] π-ring inter­actions provide added support to the crystal stability. A MOPAC computational calculation gives support to these observations.

Related literature

For related structures, see: Cox et al. (1997[Cox, P. J., Anisuzzaman, A. T. Md., Skellern, G. G., Pryce-Jones, R. H., Florence, A. J. & Shankland, N. (1997). Acta Cryst. C53, 476-477.], 2008[Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206-216.]); Harrison et al. (2005[Harrison, W. T. A., Anilkumar, H. G., Yathirajan, H. S., Sadashivamurthy, B. & Basavaraju, Y. B. (2005). Acta Cryst. E61, o4146-o4148.]); Malathy Sony et al. (2005[Malathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Nethaji, M. (2005). Acta Cryst. E61, o632-o634.]); Prasanna & Guru Row (2000[Prasanna, M. D. & Guru Row, T. N. (2000). CrystEngComm, 2, 134-140.]); Xing et al. (2005[Xing, Z.-Y., Liu, H.-M., Wu, L. & Zhang, W.-Q. (2005). Acta Cryst. E61, o3796-o3797.]). For background to benzophenone derivatives, see: Colpaert et al. (2004[Colpaert, F. C., Wu, W. P., Hao, J. X., Royer, I., Sautel, F., Wiesenfeld-Hallin, Z. & Xu, X. J. (2004). Eur. J. Pharmacol. 497, 29-33.]); Deleu et al. (1992[Deleu, H., Maes, A. & Roelandts, R. (1992). Photodermatol. Photoimmunol. Photomed. 9, 29-34.]); Duncan et al. (2004[Duncan, M., Kendall, D. A. & Ralevic, V. (2004). J. Pharmacol. Exp. Ther. 311, 411-419.]); Evans et al. (1987[Evans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Willamson, W. R. N., Dowson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321-1327.]); Ottosen et al. (2003[Ottosen, E. R., Sorensen, M. D., Bjorkling, F., Skak-Nielsen, T., Fjording, M. S., Aaes, H. & Binderup, L. (2003). J. Med. Chem. 46, 5651-5662.]); Revesz et al. (2004[Revesz, L., Blum, E., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3601-3605.]); Sieroń et al. (2004[Sieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889-o1891.]); Wiesner et al. (2002[Wiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543-545.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For MOPAC AM1 computational calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA. URL: http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2O3

  • Mr = 276.67

  • Monoclinic, P 21 /c

  • a = 10.6120 (3) Å

  • b = 11.3314 (3) Å

  • c = 10.8456 (3) Å

  • β = 108.399 (3)°

  • V = 1237.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 110 K

  • 0.47 × 0.36 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.868, Tmax = 0.916

  • 8758 measured reflections

  • 4131 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 4131 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.88 2.22 3.0733 (12) 164
N1—H1B⋯O3 0.88 2.07 2.7176 (12) 130
N1—H1B⋯Clii 0.88 2.71 3.4848 (10) 148
C13—H13A⋯O2iii 0.95 2.46 3.1862 (14) 133
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzophenone derivatives are widely used in sunscreen lotions for UVA protection (Deleu et al., 1992). Benzophenone and related analogues have been reported to act as antiallergic, anti-inflammatory, antiasthamatic, antimalarial, anti-microbial and antianaphylactic agents (Evans et al., 1987; Wiesner et al., 2002; Sieroń et al., 2004). The competence of benzophenones as chemotherapeutic agents, especially as inhibitors of HIV-1 reverse transcriptase RT, cancer and inflammation, is well established and their chemistry has been studied extensively (Revesz et al., 2004). Phenylmethanones are a class of compounds having many pharmacological properties. 4-Aminobenzophenones have high anti-inflammatory activity (Ottosen et al., 2003), a benzophenyl cyano derivative acts as a vasorelaxant (Duncan et al., 2004) and the piperidinyl derivative produces analgesia (Colpaert et al., 2004). The crystal structures of some related compounds, viz., N-(2-benzoyl-4-chlorophenyl)-2-chloroacetamide (Malathy Sony et al., 2005), 2-chloroacetamido-5-chlorobenzophenone and 2-chloroacetamido-5-chloro-2'-fluorobenzophenone (Prasanna & Guru Row, 2000), 2-methylamino-5-chlorobenzophenone (Cox et al., 1997), 2-amino-2'-chloro-5-methylbenzophenone (Xing et al., 2005) and 3-chloro-4-hydroxy-4'-methylbenzophenone (Harrison et al., 2005) have been reported. Over 450 crystal structures of benzophenone derivatives in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002) highlight the importance of structural studies on such pharmaceutically useful compounds. The title compound, C13H9ClN2O3, is an intermediate in the synthesis of certain anxiolytic, anticonvulsant and sedative drugs. The title compound is also a starting material for the synthesis of diazepam and other benzodiazepines. In view of the importance of the title compound, the present paper describes its crystal structure.

The title compound, C13H9ClN2O3, crystallizes with one molecule in the asymmetric unit with Z = 4. An intramolecular hydrogen bond between the carbonyl oxygen (O3) and an amine hydrogen atom (H1B) from the 2-amino-5-nitrobenzoyl group keeps these two groups nearly in the same plane releative to each other (Fig. 1). The dihedral angle between the mean planes of the carbony group (-C6-C7(O3)-C8-) and the mean planes of the 2-amino and 2'-chlorobenzoyl planar groups is 14.6 (6)° and 66.2 (9)°, respectively. The C5-C6-C7-O3 torsion angle (164.45 (11)°) supports this observation. The nitro group is twisted slightly away from the plane of the 2-amino-benzyl group (O2-N2-C4-C3 torsion angle = 178.46 (11)°). The dihedral angle between the mean planes of the 2-aminobenzyl and 2'-chlorobenzyl planar groups is 73.8 (6)°. This value lies between the large twist angle of 83.72 (6)° as seen in 2-amino and 2'-chlorobenzenophenone, C13H9Cl2NO, (Cox et al., 2008) and 64.66 (8)° observed in 4-chloro-4'-hydroxybenzophenone, C13H9ClO2 (Cox et al., 2008). Crystal packing is supported by a collection of intermediate N1-H1A···O3, N1-H1B···O3, C13-H13A···O2 hydrogen bonds and weak N1-H1B···Cl intermolecular interactions (see Table 1) which produces an infinite, two-dimensional N-H···O···H-N-H···O bonding network parallel to the (001) plane of the unit cell (Fig. 2). Additional weak C9-Cl···Cg(2) [Cl···Cg(2)= 3.858 (3)Å], N2-O1···Cg(2) [O1···Cg(2) = 3.574 (1)Å] and N2-O2···Cg(1) [O2···Cg(1) = 3.868 (6)Å] π-ring interactions (-x, 1-y, -x; x, 1/2-y, 1/2+z; 1-x, 1-y, 1-z; Cg(1) = C1-C6 and Cg(2) = C8-C13 centroids, respectively) collectively provide added support to crystal stability.

After a MOPAC AM1 computational calculation (Schmidt & Polik, 2007), the nitro group now lies in the plane of the 2-aminobenzoyl group. The dihedral angle between the mean planes of the 2-aminobenzoyl and 2'-chlorobenzoyl planar groups becomes 88.6 (1)° while the dihedral angle between the mean planes of the carbony group (-C6-C7(O3)-C8-) and the mean planes of the 2-amino and 2'-chlorobenzoyl planar groups becomes 19.7 (3)° and 81.7 (1)°, respectively. This supports the observation of a collective action of intermediate N-H···O, C-H···O hydrogen bonds, weak N-H···Cl intermolecular interactions and weak C-Cl···Cg, N-O···Cg π-ring interactions influencing crystal packing stability.

Related literature top

For related structures, see: Cox et al. (1997, 2008); Harrison et al. (2005); Malathy Sony et al. (2005); Prasanna & Guru Row (2000); Xing et al. (2005). For background to benzophenone derivatives, see: Colpaert et al. (2004); Deleu et al. (1992); Duncan et al. (2004); Evans et al. (1987); Ottosen et al. (2003); Revesz et al. (2004); Sieroń et al. (2004); Wiesner et al. (2002). For a description of the Cmbridge Structural Database, see: Allen (2002). For MOPAC AM1 computational calculations, see: Schmidt & Polik (2007);

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. Pale yellow crystals (m.p. 378–380 K) were obtained by slow evaporation from acetonitrile solution.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.88, C—H = 0.95 Å, and with Uiso(H) = 1.18–1.21Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate intramolecular N-H···O and intermediate intermolecular N-H···O and C-H···O hydrogen bonds in concert with weak N-H···Cl interactions in the same direction producing an infinite, 2-dimensional intermolecular bonding network parallel to the (001) plane of the unit cell.
2-Amino-5-nitrophenyl 2-chlorophenyl ketone top
Crystal data top
C13H9ClN2O3F(000) = 568
Mr = 276.67Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4505 reflections
a = 10.6120 (3) Åθ = 4.7–32.6°
b = 11.3314 (3) ŵ = 0.31 mm1
c = 10.8456 (3) ÅT = 110 K
β = 108.399 (3)°Chunk, colorless
V = 1237.50 (6) Å30.47 × 0.36 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
4131 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.7°
ϕ and ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1316
Tmin = 0.868, Tmax = 0.916l = 1611
8758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
4131 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H9ClN2O3V = 1237.50 (6) Å3
Mr = 276.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6120 (3) ŵ = 0.31 mm1
b = 11.3314 (3) ÅT = 110 K
c = 10.8456 (3) Å0.47 × 0.36 × 0.28 mm
β = 108.399 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
4131 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3069 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.916Rint = 0.021
8758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
4131 reflectionsΔρmin = 0.27 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.96431 (3)0.63182 (3)0.78827 (3)0.02769 (10)
O10.48712 (10)0.77733 (9)0.32532 (9)0.0350 (2)
O20.50201 (9)0.76958 (8)0.52898 (8)0.0271 (2)
O30.82129 (9)0.31290 (8)0.73196 (7)0.02303 (19)
N10.82197 (10)0.31577 (9)0.48161 (9)0.0214 (2)
H1A0.83670.28720.41200.026*
H1B0.85150.27790.55610.026*
N20.52756 (10)0.73094 (9)0.43331 (9)0.0211 (2)
C10.75466 (11)0.41681 (10)0.47433 (10)0.0162 (2)
C20.70760 (12)0.47688 (11)0.35352 (10)0.0197 (2)
H2A0.72670.44530.28020.024*
C30.63591 (12)0.57843 (11)0.33976 (10)0.0202 (2)
H3A0.60490.61690.25790.024*
C40.60840 (11)0.62550 (10)0.44837 (10)0.0169 (2)
C50.65568 (10)0.57301 (10)0.56856 (10)0.0157 (2)
H5A0.63760.60760.64100.019*
C60.73013 (10)0.46916 (10)0.58484 (10)0.0148 (2)
C70.77971 (11)0.41506 (10)0.71401 (10)0.0159 (2)
C80.77845 (11)0.48654 (10)0.83067 (9)0.0154 (2)
C90.85984 (11)0.58380 (11)0.87385 (10)0.0184 (2)
C100.86275 (12)0.64296 (11)0.98728 (11)0.0228 (3)
H10A0.91990.70881.01650.027*
C110.78122 (12)0.60456 (12)1.05687 (11)0.0240 (3)
H11A0.78270.64431.13450.029*
C120.69750 (12)0.50870 (12)1.01432 (10)0.0214 (2)
H12A0.64060.48391.06160.026*
C130.69720 (11)0.44907 (10)0.90242 (10)0.0174 (2)
H13A0.64130.38230.87440.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02888 (16)0.03213 (19)0.02478 (15)0.01301 (13)0.01233 (12)0.00264 (12)
O10.0449 (6)0.0315 (6)0.0230 (4)0.0161 (5)0.0026 (4)0.0071 (4)
O20.0329 (5)0.0238 (5)0.0292 (4)0.0088 (4)0.0161 (4)0.0015 (4)
O30.0372 (5)0.0166 (4)0.0187 (4)0.0056 (4)0.0137 (3)0.0035 (3)
N10.0332 (5)0.0174 (5)0.0147 (4)0.0061 (4)0.0092 (4)0.0015 (4)
N20.0217 (5)0.0192 (5)0.0209 (5)0.0027 (4)0.0045 (4)0.0014 (4)
C10.0192 (5)0.0147 (5)0.0147 (5)0.0015 (4)0.0054 (4)0.0022 (4)
C20.0259 (6)0.0212 (6)0.0125 (4)0.0014 (5)0.0066 (4)0.0012 (4)
C30.0242 (5)0.0220 (6)0.0129 (5)0.0015 (5)0.0035 (4)0.0013 (4)
C40.0180 (5)0.0151 (6)0.0172 (5)0.0010 (4)0.0047 (4)0.0006 (4)
C50.0179 (5)0.0151 (6)0.0149 (5)0.0023 (4)0.0063 (4)0.0030 (4)
C60.0182 (5)0.0139 (5)0.0125 (4)0.0011 (4)0.0052 (4)0.0006 (4)
C70.0194 (5)0.0150 (5)0.0148 (5)0.0009 (4)0.0076 (4)0.0005 (4)
C80.0201 (5)0.0147 (5)0.0115 (4)0.0026 (4)0.0051 (4)0.0019 (4)
C90.0200 (5)0.0193 (6)0.0165 (5)0.0007 (4)0.0066 (4)0.0009 (4)
C100.0257 (6)0.0220 (6)0.0191 (5)0.0029 (5)0.0047 (4)0.0050 (5)
C110.0290 (6)0.0271 (7)0.0155 (5)0.0027 (5)0.0067 (4)0.0047 (5)
C120.0247 (6)0.0267 (7)0.0149 (5)0.0023 (5)0.0091 (4)0.0018 (4)
C130.0211 (5)0.0163 (6)0.0150 (5)0.0004 (4)0.0060 (4)0.0016 (4)
Geometric parameters (Å, º) top
Cl—C91.7426 (12)C5—C61.3972 (15)
O1—N21.2309 (13)C5—H5A0.9500
O2—N21.2326 (13)C6—C71.4663 (15)
O3—C71.2322 (14)C7—C81.5059 (15)
N1—C11.3385 (15)C8—C91.3873 (16)
N1—H1A0.8800C8—C131.3975 (15)
N1—H1B0.8800C9—C101.3927 (16)
N2—C41.4498 (15)C10—C111.3856 (18)
C1—C21.4201 (15)C10—H10A0.9500
C1—C61.4329 (14)C11—C121.3868 (18)
C2—C31.3614 (17)C11—H11A0.9500
C2—H2A0.9500C12—C131.3882 (15)
C3—C41.4052 (15)C12—H12A0.9500
C3—H3A0.9500C13—H13A0.9500
C4—C51.3754 (15)
C1—N1—H1A120.0C1—C6—C7121.40 (10)
C1—N1—H1B120.0O3—C7—C6123.11 (10)
H1A—N1—H1B120.0O3—C7—C8118.06 (9)
O1—N2—O2123.10 (11)C6—C7—C8118.83 (10)
O1—N2—C4118.38 (10)C9—C8—C13118.76 (10)
O2—N2—C4118.52 (9)C9—C8—C7122.77 (9)
N1—C1—C2119.35 (10)C13—C8—C7118.36 (10)
N1—C1—C6122.63 (10)C8—C9—C10121.23 (10)
C2—C1—C6118.00 (10)C8—C9—Cl120.08 (8)
C3—C2—C1121.87 (10)C10—C9—Cl118.67 (9)
C3—C2—H2A119.1C11—C10—C9119.10 (11)
C1—C2—H2A119.1C11—C10—H10A120.5
C2—C3—C4119.06 (10)C9—C10—H10A120.5
C2—C3—H3A120.5C10—C11—C12120.62 (11)
C4—C3—H3A120.5C10—C11—H11A119.7
C5—C4—C3121.35 (11)C12—C11—H11A119.7
C5—C4—N2119.28 (10)C11—C12—C13119.78 (11)
C3—C4—N2119.37 (10)C11—C12—H12A120.1
C4—C5—C6120.43 (10)C13—C12—H12A120.1
C4—C5—H5A119.8C12—C13—C8120.49 (11)
C6—C5—H5A119.8C12—C13—H13A119.8
C5—C6—C1119.20 (9)C8—C13—H13A119.8
C5—C6—C7119.40 (9)
N1—C1—C2—C3178.41 (11)C1—C6—C7—O314.58 (17)
C6—C1—C2—C32.95 (17)C5—C6—C7—C814.71 (16)
C1—C2—C3—C40.38 (18)C1—C6—C7—C8166.26 (10)
C2—C3—C4—C51.95 (18)O3—C7—C8—C9112.56 (13)
C2—C3—C4—N2177.50 (11)C6—C7—C8—C968.24 (14)
O1—N2—C4—C5179.35 (11)O3—C7—C8—C1363.73 (14)
O2—N2—C4—C51.01 (16)C6—C7—C8—C13115.48 (12)
O1—N2—C4—C31.19 (17)C13—C8—C9—C100.79 (17)
O2—N2—C4—C3178.46 (11)C7—C8—C9—C10175.49 (11)
C3—C4—C5—C61.56 (17)C13—C8—C9—Cl179.06 (8)
N2—C4—C5—C6177.89 (10)C7—C8—C9—Cl2.79 (15)
C4—C5—C6—C11.10 (16)C8—C9—C10—C110.93 (18)
C4—C5—C6—C7179.85 (10)Cl—C9—C10—C11179.23 (10)
N1—C1—C6—C5178.14 (11)C9—C10—C11—C120.14 (19)
C2—C1—C6—C53.28 (16)C10—C11—C12—C131.31 (19)
N1—C1—C6—C70.89 (17)C11—C12—C13—C81.45 (18)
C2—C1—C6—C7177.69 (10)C9—C8—C13—C120.41 (17)
C5—C6—C7—O3164.45 (11)C7—C8—C13—C12176.85 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.882.223.0733 (12)164
N1—H1B···O30.882.072.7176 (12)130
N1—H1B···Clii0.882.713.4848 (10)148
C13—H13A···O2iii0.952.463.1862 (14)133
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H9ClN2O3
Mr276.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)10.6120 (3), 11.3314 (3), 10.8456 (3)
β (°) 108.399 (3)
V3)1237.50 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.47 × 0.36 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.868, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
8758, 4131, 3069
Rint0.021
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections4131
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.882.223.0733 (12)163.7
N1—H1B···O30.882.072.7176 (12)129.7
N1—H1B···Clii0.882.713.4848 (10)148.0
C13—H13A···O2iii0.952.463.1862 (14)133.2
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

QNMHA thanks the University of Mysore for the use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationColpaert, F. C., Wu, W. P., Hao, J. X., Royer, I., Sautel, F., Wiesenfeld-Hallin, Z. & Xu, X. J. (2004). Eur. J. Pharmacol. 497, 29–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCox, P. J., Anisuzzaman, A. T. Md., Skellern, G. G., Pryce-Jones, R. H., Florence, A. J. & Shankland, N. (1997). Acta Cryst. C53, 476–477.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206–216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeleu, H., Maes, A. & Roelandts, R. (1992). Photodermatol. Photoimmunol. Photomed. 9, 29–34.  PubMed CAS Web of Science Google Scholar
First citationDuncan, M., Kendall, D. A. & Ralevic, V. (2004). J. Pharmacol. Exp. Ther. 311, 411–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Willamson, W. R. N., Dowson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321–1327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHarrison, W. T. A., Anilkumar, H. G., Yathirajan, H. S., Sadashivamurthy, B. & Basavaraju, Y. B. (2005). Acta Cryst. E61, o4146–o4148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Nethaji, M. (2005). Acta Cryst. E61, o632–o634.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOttosen, E. R., Sorensen, M. D., Bjorkling, F., Skak-Nielsen, T., Fjording, M. S., Aaes, H. & Binderup, L. (2003). J. Med. Chem. 46, 5651–5662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2000). CrystEngComm, 2, 134–140.  Google Scholar
First citationRevesz, L., Blum, E., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3601–3605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA. URL: http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889–o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXing, Z.-Y., Liu, H.-M., Wu, L. & Zhang, W.-Q. (2005). Acta Cryst. E61, o3796–o3797.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1908-o1909
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds