organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(3-Bromo­phen­yl)-1-(4-chloro­phen­yl)prop-2-en-1-one: a non-merohedral twin

aKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri 574 199, India, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 21 April 2009; accepted 14 July 2009; online 18 July 2009)

In the title compound, C15H10BrClO, the mol­ecule adopts an E configuration with respect to the C=C double bond and the dihedral angle between the aromatic ring planes is 3.98 (16)°. In the crystal, inversion dimers linked by pairs of C—H⋯O bonds are seen and weak ππ stacking [centroid–centroid separation = 3.8776 (19) Å] may further consolidate the structure. The crystal studied was a non-merohedral twin with a ratio of the twin components of 0.9093 (13):0.0907 (13). The twin operation is a twofold rotation around c*.

Related literature

For related structures and background to bromo- and chloro-substituted chalcones, see: Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046-o4047.]), Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Vijesh, A. M., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3656.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClO

  • Mr = 321.59

  • Monoclinic, P 21 /n

  • a = 14.7421 (10) Å

  • b = 6.1024 (4) Å

  • c = 15.1874 (10) Å

  • β = 103.905 (2)°

  • V = 1326.25 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 296 K

  • 0.59 × 0.58 × 0.41 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.248, Tmax = 0.346 (expected range = 0.186–0.260)

  • 2609 measured reflections

  • 2609 independent reflections

  • 2273 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.05

  • 2609 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.53 3.328 (4) 144
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies of bromo- and chloro-substituted chalcones (Yathirajan, et al., 2006; Sarojini, et al., 2007), we now present the synthesis and structure of the title compound (Fig. 1).

The molecule adopts an E configuration with respect to the C=C double bond of the propenone unit. The two benzene rings are approximately coplanar, with a dihedral angle of 3.98 (16)° between their mean planes. The bromine atom is displaced from the C1–C6 mean plane by -0.051 (1)Å and the chlorine atom is displaced from C10–C15 by 0.028 (1) Å. In the crystal, inversion dimers linked by pairs of weak C—H···O interactions (Table 1, Fig. 2) occur.

Related literature top

For related structures and background to bromo- and chloro-substituted chalcones, see: Yathirajan et al. (2006), Sarojini et al. (2007).

Experimental top

50% KOH was added to a solution of 4-chloroacetophenone (1.54 g, 0.01 mol) and 3-bromobenzaldehyde (1.86 g, 0.01 mol) in 25 ml of ethanol at 273 K. The mixture was stirred for an hour at room temperature and then poured onto crushed ice. A yellow precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow blocks of the title compound were grown from a mixture of acetone and toluene (1:1) by slow evaporation. Yield of the compound was 80%. Analysis: found (calculated): C%, 55.94 (56.02); H%, 3.10 (3.13).

Refinement top

The H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The investigated crystal was a non-merohedral twin with a ratio of the twin components of 0.9093 (13):0.0907 (13) corresponding to a 2-fold rotation about (0 0 1), as determined with the TwinRotMat option of PLATON (Spek, 2009). The final refinement was carried out agains a detwinned data set.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. An inversion dimer in the crystal of the title compound linked by two C—H···O bonds (double dashed lines). Symmetry code: (i) 1–x, –y, 1–z.
(2E)-3-(3-Bromophenyl)-1-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrClOF(000) = 640
Mr = 321.59Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7751 reflections
a = 14.7421 (10) Åθ = 2.2–28.0°
b = 6.1024 (4) ŵ = 3.28 mm1
c = 15.1874 (10) ÅT = 296 K
β = 103.905 (2)°Block, yellow
V = 1326.25 (15) Å30.59 × 0.58 × 0.41 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2609 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.248, Tmax = 0.346k = 77
2609 measured reflectionsl = 718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.8199P]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H10BrClOV = 1326.25 (15) Å3
Mr = 321.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7421 (10) ŵ = 3.28 mm1
b = 6.1024 (4) ÅT = 296 K
c = 15.1874 (10) Å0.59 × 0.58 × 0.41 mm
β = 103.905 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2273 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.346Rint = 0.000
2609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.88 e Å3
2609 reflectionsΔρmin = 0.29 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4051 (2)0.2640 (5)0.2830 (2)0.0443 (7)
H10.43220.12610.29450.053*
C20.3780 (2)0.3405 (5)0.1953 (2)0.0441 (7)
C30.3410 (2)0.5470 (6)0.1759 (2)0.0509 (8)
H30.32260.59560.11630.061*
C40.3316 (2)0.6805 (5)0.2464 (2)0.0504 (8)
H40.30790.82140.23420.060*
C50.3567 (2)0.6075 (5)0.3344 (2)0.0477 (7)
H50.35060.70000.38130.057*
C60.3918 (2)0.3935 (6)0.3544 (2)0.0472 (7)
C70.4073 (2)0.2956 (6)0.4461 (2)0.0515 (8)
H70.43700.16010.45440.062*
C80.3834 (3)0.3799 (6)0.5171 (3)0.0582 (9)
H80.35250.51390.51120.070*
C90.4039 (2)0.2704 (6)0.6041 (2)0.0503 (8)
C100.3899 (2)0.3888 (5)0.6857 (2)0.0422 (7)
C110.3495 (2)0.5970 (6)0.6819 (2)0.0481 (7)
H110.33020.66800.62640.058*
C120.3382 (3)0.6981 (6)0.7600 (2)0.0518 (8)
H120.31040.83550.75710.062*
C130.3684 (2)0.5938 (6)0.8414 (2)0.0523 (8)
C140.4088 (3)0.3879 (7)0.8473 (2)0.0580 (9)
H140.42920.31900.90320.070*
C150.4182 (2)0.2872 (6)0.7689 (2)0.0525 (8)
H150.44420.14780.77210.063*
Br10.39001 (3)0.15363 (7)0.09849 (2)0.06520 (19)
Cl10.35623 (9)0.7258 (2)0.93947 (7)0.0815 (4)
O10.4300 (2)0.0808 (5)0.61022 (19)0.0731 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (16)0.0409 (16)0.0405 (16)0.0034 (13)0.0114 (13)0.0024 (13)
C20.0526 (17)0.0432 (16)0.0401 (16)0.0059 (13)0.0181 (13)0.0060 (13)
C30.0623 (19)0.0523 (19)0.0414 (16)0.0001 (16)0.0187 (14)0.0089 (15)
C40.0551 (18)0.0391 (16)0.060 (2)0.0048 (14)0.0191 (15)0.0078 (14)
C50.0545 (18)0.0426 (17)0.0468 (17)0.0035 (13)0.0139 (14)0.0091 (14)
C60.0535 (17)0.0461 (17)0.0403 (16)0.0080 (14)0.0078 (13)0.0028 (13)
C70.0591 (19)0.0495 (18)0.0469 (18)0.0030 (15)0.0145 (15)0.0012 (15)
C80.071 (2)0.059 (2)0.0481 (19)0.0158 (17)0.0221 (17)0.0028 (15)
C90.0515 (17)0.0513 (19)0.0463 (18)0.0074 (15)0.0081 (14)0.0043 (14)
C100.0420 (15)0.0409 (16)0.0451 (16)0.0005 (12)0.0129 (12)0.0015 (13)
C110.0614 (18)0.0457 (17)0.0396 (16)0.0064 (14)0.0173 (14)0.0036 (13)
C120.066 (2)0.0447 (17)0.0488 (18)0.0072 (15)0.0212 (15)0.0015 (14)
C130.0562 (18)0.064 (2)0.0406 (17)0.0010 (16)0.0194 (14)0.0062 (15)
C140.068 (2)0.067 (2)0.0410 (18)0.0094 (18)0.0172 (16)0.0081 (16)
C150.0568 (18)0.0491 (18)0.0523 (19)0.0081 (15)0.0147 (15)0.0062 (15)
Br10.1023 (3)0.0578 (3)0.0422 (2)0.00177 (19)0.0304 (2)0.00801 (15)
Cl10.1037 (8)0.0997 (9)0.0472 (5)0.0144 (7)0.0302 (5)0.0135 (5)
O10.102 (2)0.0526 (15)0.0671 (17)0.0213 (15)0.0250 (15)0.0046 (13)
Geometric parameters (Å, º) top
C1—C21.377 (5)C8—H80.9300
C1—C61.393 (4)C9—O11.216 (5)
C1—H10.9300C9—C101.491 (4)
C2—C31.377 (5)C10—C151.379 (5)
C2—Br11.902 (3)C10—C111.398 (4)
C3—C41.379 (5)C11—C121.382 (5)
C3—H30.9300C11—H110.9300
C4—C51.373 (5)C12—C131.366 (5)
C4—H40.9300C12—H120.9300
C5—C61.411 (5)C13—C141.384 (5)
C5—H50.9300C13—Cl11.740 (3)
C6—C71.482 (5)C14—C151.375 (5)
C7—C81.317 (5)C14—H140.9300
C7—H70.9300C15—H150.9300
C8—C91.446 (5)
C2—C1—C6119.9 (3)C9—C8—H8119.0
C2—C1—H1120.1O1—C9—C8120.1 (3)
C6—C1—H1120.1O1—C9—C10120.2 (3)
C3—C2—C1121.6 (3)C8—C9—C10119.7 (3)
C3—C2—Br1119.3 (2)C15—C10—C11118.6 (3)
C1—C2—Br1119.0 (2)C15—C10—C9118.2 (3)
C2—C3—C4118.9 (3)C11—C10—C9123.2 (3)
C2—C3—H3120.5C12—C11—C10120.5 (3)
C4—C3—H3120.5C12—C11—H11119.7
C5—C4—C3120.7 (3)C10—C11—H11119.7
C5—C4—H4119.6C13—C12—C11119.2 (3)
C3—C4—H4119.6C13—C12—H12120.4
C4—C5—C6120.6 (3)C11—C12—H12120.4
C4—C5—H5119.7C12—C13—C14121.5 (3)
C6—C5—H5119.7C12—C13—Cl1118.7 (3)
C1—C6—C5118.1 (3)C14—C13—Cl1119.7 (3)
C1—C6—C7118.9 (3)C15—C14—C13118.7 (3)
C5—C6—C7122.7 (3)C15—C14—H14120.6
C8—C7—C6126.9 (3)C13—C14—H14120.6
C8—C7—H7116.5C14—C15—C10121.4 (3)
C6—C7—H7116.5C14—C15—H15119.3
C7—C8—C9122.0 (3)C10—C15—H15119.3
C7—C8—H8119.0
C6—C1—C2—C32.5 (5)O1—C9—C10—C157.9 (5)
C6—C1—C2—Br1176.2 (2)C8—C9—C10—C15174.1 (3)
C1—C2—C3—C40.5 (5)O1—C9—C10—C11172.1 (3)
Br1—C2—C3—C4179.3 (3)C8—C9—C10—C115.9 (5)
C2—C3—C4—C51.4 (5)C15—C10—C11—C120.2 (5)
C3—C4—C5—C60.7 (5)C9—C10—C11—C12179.8 (3)
C2—C1—C6—C54.5 (5)C10—C11—C12—C131.1 (5)
C2—C1—C6—C7170.4 (3)C11—C12—C13—C141.0 (6)
C4—C5—C6—C13.6 (5)C11—C12—C13—Cl1178.5 (3)
C4—C5—C6—C7171.1 (3)C12—C13—C14—C150.2 (6)
C1—C6—C7—C8167.8 (4)Cl1—C13—C14—C15179.6 (3)
C5—C6—C7—C86.9 (6)C13—C14—C15—C101.2 (5)
C6—C7—C8—C9178.8 (3)C11—C10—C15—C141.0 (5)
C7—C8—C9—O112.1 (6)C9—C10—C15—C14179.0 (3)
C7—C8—C9—C10169.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.533.328 (4)144
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrClO
Mr321.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.7421 (10), 6.1024 (4), 15.1874 (10)
β (°) 103.905 (2)
V3)1326.25 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.59 × 0.58 × 0.41
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.248, 0.346
No. of measured, independent and
observed [I > 2σ(I)] reflections
2609, 2609, 2273
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.05
No. of reflections2609
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.533.328 (4)144
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

BN thanks Mangalore University for providing research facilities.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Vijesh, A. M., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046–o4047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds