organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Cyclo­hexyl­carbon­yl)isonicotino­hydrazide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 July 2009; accepted 13 July 2009; online 18 July 2009)

In the title compound, C13H17N3O2, the mean plane of the cyclo­hexane ring forms a dihedral angle of 33.12 (5)° with the pyridine ring. The two O atoms are twisted away from each other, as indicated by the C—N—N—C torsion angle of −74.97 (9)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds. The structure is also stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]). For the preparation, see: Besra et al. (1993[Besra, G. S., Minnikin, D. E., Wheeler, P. R. & Ratledge, C. (1993). Chem. Phys. Lipids, 66, 23-34.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17N3O2

  • Mr = 247.30

  • Orthorhombic, P 21 21 21

  • a = 9.1184 (2) Å

  • b = 11.5989 (2) Å

  • c = 12.1684 (2) Å

  • V = 1286.97 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.60 × 0.40 × 0.33 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.971

  • 27969 measured reflections

  • 3210 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.11

  • 3210 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.911 (18) 2.095 (18) 2.9456 (10) 155.0 (16)
N3—H1N3⋯O2ii 0.900 (16) 1.854 (16) 2.7486 (9) 172.4 (14)
C2—H2⋯O1iii 1.017 (18) 2.527 (18) 3.4971 (11) 159.4 (14)
C4—H4⋯O1iv 0.948 (15) 2.502 (15) 3.3062 (10) 142.6 (12)
C10—H10BCg1v 1.01 (2) 2.78 (3) 3.7299 (14) 157.1 (16)
C13—H13ACg1vi 0.993 (15) 2.958 (16) 3.7039 (10) 132.7 (12)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2]; (iv) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (v) [-x-1, y+{\script{3\over 2}}, -z+{\script{5\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]. Cg1 is the centroid of the C1/C2/N1/C3–C5 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound which was synthesized in our lab.

Bond lengths and angles of the title compound (I), (Fig. 1) are within the normal range (Allen et al., 1987). The mean plane of cyclohexane ring forms dihedral angle of 33.12 (5)° with the pyridine ring. The O1 and O2 atoms are twisted away from each other as is indicated by torsion angle C6–N2–N3–C7 [-74.97 (9)°]. In the crystal structure, the molecules are linked into three-dimensional network by the intermolecular N2—H1N2···N1, N3—H1N3···O2, C2—H2···O1 and C4—H4···O1 hydrogen bonds. The structure is also stabilized by C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000). For the preparation, see: Besra et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1/C2/N1/C3–C5 ring.

Experimental top

The isoniazid (INH) derivative was prepared following the procedure by literature (Besra et al., 1993). Dry dichloromethane (30 ml) and 4-dimethylaminopyridine (4-DMAP) (1.2 eq) was added to cyclohexane carbonyl chloride followed by INH (1.1 eq). The reaction mixture was kept in an ice bath for 1 h and then left stirring under nitrogen overnight at room temperature. Dichloromethane (20 ml) was added to the reaction mixture, which was then washed with water, and the organic layer dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to afford the crude product which was purified by column chromatography and recrystallized from methanol to afford colorless crystals.

Refinement top

All hydrogen atoms were located from the difference Fourier map and refined freely. As there are not enough anomalous dispersion effects to determine the absolute configuration, 2499 Friedel pairs were merged before final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
N'-(Cyclohexylcarbonyl)isonicotinohydrazide top
Crystal data top
C13H17N3O2F(000) = 528
Mr = 247.30Dx = 1.276 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9922 reflections
a = 9.1184 (2) Åθ = 2.8–35.1°
b = 11.5989 (2) ŵ = 0.09 mm1
c = 12.1684 (2) ÅT = 100 K
V = 1286.97 (4) Å3Block, colourless
Z = 40.60 × 0.40 × 0.33 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3210 independent reflections
Radiation source: fine-focus sealed tube3124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 35.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.941, Tmax = 0.971k = 1817
27969 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0754P]
where P = (Fo2 + 2Fc2)/3
3210 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H17N3O2V = 1286.97 (4) Å3
Mr = 247.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1184 (2) ŵ = 0.09 mm1
b = 11.5989 (2) ÅT = 100 K
c = 12.1684 (2) Å0.60 × 0.40 × 0.33 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3124 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.971Rint = 0.022
27969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.25 e Å3
3210 reflectionsΔρmin = 0.34 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75737 (8)1.01913 (6)1.03928 (5)0.02041 (13)
O20.99005 (6)0.79925 (5)1.04401 (5)0.01593 (11)
N11.02861 (8)1.26064 (6)0.76325 (6)0.01714 (12)
N20.80178 (7)0.89033 (6)0.90156 (5)0.01293 (11)
N30.76418 (7)0.79834 (6)0.96907 (5)0.01347 (11)
C10.94236 (10)1.18220 (7)0.93422 (6)0.01703 (14)
C21.01495 (11)1.26604 (7)0.87318 (7)0.01889 (14)
C30.96940 (10)1.16932 (7)0.71250 (6)0.01606 (13)
C40.89624 (9)1.08036 (7)0.76639 (6)0.01426 (12)
C50.88303 (8)1.08714 (6)0.88042 (6)0.01264 (12)
C60.80847 (8)0.99670 (6)0.94875 (6)0.01322 (12)
C70.86549 (7)0.75756 (6)1.04018 (6)0.01175 (11)
C80.81852 (8)0.65554 (6)1.10913 (6)0.01238 (11)
C90.87614 (11)0.54417 (7)1.05682 (7)0.02033 (15)
C100.83192 (15)0.43958 (8)1.12611 (10)0.0300 (2)
C110.88525 (14)0.45089 (10)1.24449 (11)0.0315 (2)
C120.82967 (13)0.56214 (10)1.29578 (7)0.02597 (18)
C130.87382 (11)0.66737 (8)1.22748 (7)0.02036 (15)
H10.936 (2)1.1925 (16)1.0135 (14)0.033 (4)*
H21.062 (2)1.3365 (15)0.9082 (14)0.032 (4)*
H30.9786 (19)1.1702 (14)0.6350 (14)0.027 (4)*
H40.8560 (17)1.0205 (13)0.7227 (12)0.018 (3)*
H80.7101 (18)0.6508 (14)1.1062 (12)0.021 (3)*
H9A0.837 (2)0.5361 (17)0.9849 (16)0.042 (5)*
H9B0.9813 (19)0.5498 (15)1.0523 (14)0.028 (4)*
H10A0.869 (2)0.3690 (19)1.0921 (16)0.046 (5)*
H10B0.722 (3)0.4297 (19)1.1277 (16)0.047 (5)*
H11A0.860 (2)0.3808 (16)1.2833 (14)0.031 (4)*
H11B0.995 (3)0.454 (2)1.249 (2)0.053 (6)*
H12A0.872 (2)0.5711 (18)1.3708 (15)0.043 (5)*
H12B0.722 (2)0.5602 (16)1.2991 (13)0.032 (4)*
H13A0.8388 (18)0.7410 (13)1.2598 (12)0.018 (3)*
H13B0.985 (2)0.6778 (15)1.2258 (14)0.030 (4)*
H1N20.862 (2)0.8724 (16)0.8443 (15)0.036 (5)*
H1N30.6729 (18)0.7705 (13)0.9596 (12)0.022 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (3)0.0174 (3)0.0152 (2)0.0016 (2)0.0095 (2)0.0005 (2)
O20.0107 (2)0.0156 (2)0.0215 (2)0.00104 (18)0.00008 (19)0.0012 (2)
N10.0205 (3)0.0136 (2)0.0173 (3)0.0004 (2)0.0028 (2)0.0031 (2)
N20.0148 (2)0.0104 (2)0.0135 (2)0.00010 (19)0.00287 (19)0.00212 (19)
N30.0116 (2)0.0128 (2)0.0159 (2)0.00129 (19)0.0005 (2)0.0046 (2)
C10.0258 (3)0.0126 (3)0.0127 (3)0.0015 (3)0.0022 (2)0.0006 (2)
C20.0263 (4)0.0129 (3)0.0175 (3)0.0031 (3)0.0013 (3)0.0000 (2)
C30.0198 (3)0.0155 (3)0.0129 (3)0.0002 (3)0.0022 (2)0.0030 (2)
C40.0179 (3)0.0133 (3)0.0115 (2)0.0005 (2)0.0009 (2)0.0011 (2)
C50.0158 (3)0.0107 (3)0.0115 (2)0.0009 (2)0.0018 (2)0.0012 (2)
C60.0149 (3)0.0116 (3)0.0131 (3)0.0016 (2)0.0026 (2)0.0014 (2)
C70.0111 (2)0.0111 (2)0.0131 (2)0.0007 (2)0.0008 (2)0.0001 (2)
C80.0125 (2)0.0115 (3)0.0131 (3)0.0003 (2)0.0005 (2)0.0015 (2)
C90.0292 (4)0.0117 (3)0.0202 (3)0.0009 (3)0.0069 (3)0.0015 (2)
C100.0457 (6)0.0107 (3)0.0336 (5)0.0014 (4)0.0128 (4)0.0013 (3)
C110.0324 (5)0.0236 (4)0.0386 (5)0.0063 (4)0.0018 (4)0.0171 (4)
C120.0337 (5)0.0278 (4)0.0164 (3)0.0030 (4)0.0022 (3)0.0080 (3)
C130.0275 (4)0.0196 (3)0.0139 (3)0.0032 (3)0.0030 (3)0.0010 (2)
Geometric parameters (Å, º) top
O1—C61.2241 (9)C7—C81.5125 (10)
O2—C71.2353 (9)C8—C131.5321 (11)
N1—C31.3397 (11)C8—C91.5329 (11)
N1—C21.3448 (11)C8—H80.990 (16)
N2—C61.3622 (10)C9—C101.5315 (13)
N2—N31.3895 (9)C9—H9A0.95 (2)
N2—H1N20.910 (19)C9—H9B0.963 (18)
N3—C71.3513 (9)C10—C111.5260 (19)
N3—H1N30.900 (17)C10—H10A0.98 (2)
C1—C21.3912 (11)C10—H10B1.01 (2)
C1—C51.3917 (11)C11—C121.5203 (18)
C1—H10.973 (18)C11—H11A0.967 (19)
C2—H21.017 (18)C11—H11B1.00 (3)
C3—C41.3927 (11)C12—C131.5306 (13)
C3—H30.946 (17)C12—H12A0.997 (19)
C4—C51.3950 (10)C12—H12B0.98 (2)
C4—H40.948 (15)C13—H13A0.993 (15)
C5—C61.5014 (10)C13—H13B1.02 (2)
C3—N1—C2117.26 (7)C13—C8—H8111.5 (8)
C6—N2—N3117.22 (6)C9—C8—H8106.3 (9)
C6—N2—H1N2120.2 (12)C10—C9—C8110.40 (7)
N3—N2—H1N2115.2 (11)C10—C9—H9A109.4 (13)
C7—N3—N2118.60 (6)C8—C9—H9A109.8 (13)
C7—N3—H1N3126.1 (10)C10—C9—H9B110.4 (10)
N2—N3—H1N3115.3 (10)C8—C9—H9B107.9 (11)
C2—C1—C5119.18 (7)H9A—C9—H9B109.0 (17)
C2—C1—H1118.0 (11)C11—C10—C9111.57 (9)
C5—C1—H1122.8 (11)C11—C10—H10A111.1 (12)
N1—C2—C1122.85 (8)C9—C10—H10A109.8 (12)
N1—C2—H2114.5 (10)C11—C10—H10B107.9 (11)
C1—C2—H2122.6 (10)C9—C10—H10B111.2 (12)
N1—C3—C4124.18 (7)H10A—C10—H10B105.1 (17)
N1—C3—H3114.5 (10)C12—C11—C10110.75 (8)
C4—C3—H3121.3 (10)C12—C11—H11A115.7 (11)
C3—C4—C5117.90 (7)C10—C11—H11A108.2 (11)
C3—C4—H4117.7 (9)C12—C11—H11B106.4 (14)
C5—C4—H4124.4 (9)C10—C11—H11B112.2 (15)
C1—C5—C4118.62 (7)H11A—C11—H11B103.5 (18)
C1—C5—C6117.98 (6)C11—C12—C13111.48 (8)
C4—C5—C6123.41 (7)C11—C12—H12A109.6 (12)
O1—C6—N2123.70 (7)C13—C12—H12A108.2 (12)
O1—C6—C5121.48 (7)C11—C12—H12B109.3 (11)
N2—C6—C5114.82 (6)C13—C12—H12B107.7 (11)
O2—C7—N3121.04 (7)H12A—C12—H12B110.6 (16)
O2—C7—C8123.07 (7)C12—C13—C8110.63 (7)
N3—C7—C8115.81 (6)C12—C13—H13A112.7 (9)
C7—C8—C13110.98 (6)C8—C13—H13A110.1 (9)
C7—C8—C9109.38 (6)C12—C13—H13B111.5 (10)
C13—C8—C9110.67 (7)C8—C13—H13B108.6 (9)
C7—C8—H8107.9 (9)H13A—C13—H13B103.0 (14)
C6—N2—N3—C774.97 (9)N2—N3—C7—O21.43 (11)
C3—N1—C2—C10.37 (13)N2—N3—C7—C8178.54 (6)
C5—C1—C2—N11.17 (14)O2—C7—C8—C1343.39 (10)
C2—N1—C3—C40.43 (13)N3—C7—C8—C13139.56 (7)
N1—C3—C4—C50.40 (13)O2—C7—C8—C979.00 (9)
C2—C1—C5—C41.15 (12)N3—C7—C8—C998.04 (8)
C2—C1—C5—C6178.57 (8)C7—C8—C9—C10179.16 (8)
C3—C4—C5—C10.42 (12)C13—C8—C9—C1056.58 (10)
C3—C4—C5—C6179.29 (7)C8—C9—C10—C1156.32 (12)
N3—N2—C6—O114.45 (11)C9—C10—C11—C1255.80 (13)
N3—N2—C6—C5166.16 (6)C10—C11—C12—C1355.73 (12)
C1—C5—C6—O123.87 (12)C11—C12—C13—C856.45 (11)
C4—C5—C6—O1156.42 (8)C7—C8—C13—C12178.34 (7)
C1—C5—C6—N2156.72 (7)C9—C8—C13—C1256.70 (10)
C4—C5—C6—N222.99 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.911 (18)2.095 (18)2.9456 (10)155.0 (16)
N3—H1N3···O2ii0.900 (16)1.854 (16)2.7486 (9)172.4 (14)
C2—H2···O1iii1.017 (18)2.527 (18)3.4971 (11)159.4 (14)
C4—H4···O1iv0.948 (15)2.502 (15)3.3062 (10)142.6 (12)
C10—H10B···Cg1v1.01 (2)2.78 (3)3.7299 (14)157.1 (16)
C13—H13A···Cg1vi0.993 (15)2.958 (16)3.7039 (10)132.7 (12)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+5/2, z+2; (iv) x+3/2, y+2, z1/2; (v) x1, y+3/2, z+5/2; (vi) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17N3O2
Mr247.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1184 (2), 11.5989 (2), 12.1684 (2)
V3)1286.97 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.40 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.941, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
27969, 3210, 3124
Rint0.022
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.11
No. of reflections3210
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.911 (18)2.095 (18)2.9456 (10)155.0 (16)
N3—H1N3···O2ii0.900 (16)1.854 (16)2.7486 (9)172.4 (14)
C2—H2···O1iii1.017 (18)2.527 (18)3.4971 (11)159.4 (14)
C4—H4···O1iv0.948 (15)2.502 (15)3.3062 (10)142.6 (12)
C10—H10B···Cg1v1.01 (2)2.78 (3)3.7299 (14)157.1 (16)
C13—H13A···Cg1vi0.993 (15)2.958 (16)3.7039 (10)132.7 (12)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+5/2, z+2; (iv) x+3/2, y+2, z1/2; (v) x1, y+3/2, z+5/2; (vi) x+3/2, y+2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research is supported by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815005). HKF and CSY thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and USM for the award of the post of Research Officer under the Science Fund Grant (No. 305/PFIZIK/613312). HSNK is grateful for a USM fellowship for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBesra, G. S., Minnikin, D. E., Wheeler, P. R. & Ratledge, C. (1993). Chem. Phys. Lipids, 66, 23–34.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds